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There are many situations in which a seller, often a government, auctions many similar
items over a long period of time. For example, over the past several decades, the Federal Deposit
Insurance Corporation (FDIC) and the Resolution Trust Corporation (RTC) have auctioned tens
of thousands of houses for tens of billions of dollars. Over the past thirty years, the U.S.
Department of the Interior has auctioned billions of dollars worth of timber cutting rights and off-
shore oil leases. Sales of treasury bills are in the trillions of dollars. This paper provides a
procedure for increasing the seller's revenue over that obtained by ad hoc formulae used in
practice by using historical data to improve on the minimum acceptable bid, or reserve price,
imposed in the auction. Because the procedure is applicable to environments of considerable
economic value, including not only real estate but also oil and other mineral rights, timber, radio
spectrum and treasury bills, there is a potential for application of our theory to create a significant
amount of increased revenue.

In contrast to much of the literature, we study an environment which allows for affiliation
in the signals and common components to value, and in which participation is endogenously
determined. With some important exceptions, the empirical auction literature has concentrated on
the independent private values environment in which bidders know their own valuations and
these valuations are independently distributed.! Such models cannot account for either
correlation in valuations, as would occur if there are common factors that influence value and
vary from auction to auction, or in unobserved factors affecting valuations that are common to

the bidders.” These factors are clearly important in any real world auction environment, as Paul

! The most important theoretical treatment is Paul Milgrom and Robert Weber (1982), which developed the mathematical tools used
in the present study. The auction literature is surveyed in McAfee and John McMillan (1987a). More specialized surveys are provided
by Milgrom (1988) and Robert Wilson (1991). Optimal auctions with correlated values were studied by Jacques Cremer and Richard
McLean (1985), McAfee, McMillan, and Philip Reny (1989), and McAfee and Reny (1991).

? Even if bidders know their own value for the item being sold, it would be rather surprising if these values weren't correlated
through unobserved factors. For example, the desirability of a work of art purchased purely for private viewing is likely to be correlated
across bidders. More generally, bidders only receive an estimate of the value, and the realized value will depend on unobserved factors
correlated with all of the bidders' signals; e.g. the amount of oil in a tract is unobserved prior to drilling, but is presumably correlated
with all the bidders' signals. In addition, the potential for resale at an uncertain future price induces correlation in the bidders'
valuations.



Milgrom and Robert Weber (1982) persuasively argue. In addition, the auction literature has
focused on the case of an exogenous set of bidders. In many real situations, bidders are attracted
to the auction by potential profits, and changes in the selling mechanism will change the bidders'
participation decisions.

In all but the simplest environments, optimal selling mechanisms tend to be very
complicated and depend on the distributions of signals, utility functions and other aspects of the
environment that are not actually observable but assumed known in order to fully specify a
model. While we will also assume that agents in the model know the distributions of signals and
utility functions of the other agents, in contrast to the existing literature, we simply derive a lower
bound on the optimal reserve price that does not depend on specific knowledge of the
distributions or utility functions posited in the model.’ That is, the lower bound will be
distribution-free.*

This approach is an extension of the analysis in McAfee and Vincent (1992), which
applied a related analysis to the case of off-shore oil auctions. In this study we allow for more
general valuation functions, (the earlier study restricted attention to a pure common value
environment) and apply the analysis to a broader class of auction mechanisms including first
price, second price and oral auctions. Most significantly, the approach offered in this paper does
require the observation of the ex post value of the object. In most cases, observations of the ex
post value of sold objects will be impossible; the OCS oil lease auction data, studied by Kenneth

Hendricks and Robert Porter, with coauthors (1987, 1990, 1992), is an exception in this regard.

3 A differentiated feature of the model in this paper is that it incorporates entry decisions by bidders. In addition to our earlier study,
McAfee and McMillan (1987b,¢), Harstad (1990) and Levin and Smith (1994) examine endogenous and stochastic participation in
auctions.

* Distributions and utility functions are the primitives of auction theory and we follow the literature in assuming that these
primitives are common knowledge of the bidders. Our constructed lower bound is observable in many auction data sets. In contrast,
setting an optimal reserve price in the relatively well-behaved independent private values auction requires knowledge of the distribution
of valuations.



Furthermore, the present study computes improvements for potentially large adjustments to the
reserve, while the previous study applied only to small changes. We consider our approach to be
more robust than the optimal auctions approach because it depends on fewer assumptions and
less knowledge on the part of the seller. In addition, by focusing on a simple improvement that a
seller might reasonably adopt rather than a complex optimal auction, our approach is more
practical.

Consider a sequence of similar items sold by auction. These items could be houses, off-
shore oil rights, or other related items. We consider how to use data from early auctions to adjust
the reserve price for the later sales. We presume that items that fail to sell have realized values
prior to the subsequent auctions of new items. For example, items that fail to sell in early
auctions are likely to be sold eventually. In particular, in the real estate sales application, houses
that failed to sell in early auctions were sold later by bargaining or subsequent auctions, and a
price for the seller was realized. This later realized price, discounted to the time of the initial sale
attempt, is used to determine whether expected revenues will increase if a higher reserve price is
imposed in subsequent auction of new but similar items.

We show that the discounted expected sale price of items that failed to sell in past
auctions is a lower bound for the optimal reserve, if this average sale price exceeds the past
reserve. It is useful to distinguish ex ante considerations of the seller, which occur prior to the
participation decisions, from ex post considerations, which occur at the time of bidding.
Endogenous participation implies that the bidders earn zero ex ante expected rents. Thus, on
average, the entire gains from trade accrue to the seller, and in contrast to models with an
exogenous number of bidders, the seller wishes to post an ex ante efficient reserve price.
However, efficiency ex post means setting a reserve price equal to the seller's value associated

with retaining the object. For a large class of environments, the ex ante efficient reserve exceeds



the ex post efficient reserve, because of an entry externality. Therefore, the seller ex ante should
post a reserve price above the seller's opportunity cost of sale.

Two complications arise in calculating the value of the object to the seller. First, the ex
post efficient reserve holds the participation strategy of the bidders constant and equates the
value of items that just fail to sell at the current reserve to the seller's expected value of these
items” rather than the average value of all unsold items. Realistically, though, it is the average
value that is typically observable. Second, even the average value of unsold items will tend to
vary with the reserve. If unsold goods are kept by the seller and used in some alternative capacity
of known value, then the seller could simply observe the value of unsold goods. However, more
plausibly, the value of the item depends on some imperfectly observed intrinsic quality. This is
particularly the case when the opportunity cost of sale in the present auction is the value of sale
in a subsequent auction. This quality will tend to be correlated with buyers' willingness to pay,
and thus changing the reserve price will change the quality, and hence the expected value to the
seller, of unsold items. Therefore, changes in the reserve price change the composition of the set
of objects that fail to sell, a classic case of sample selection bias.

The sample selection problem implies that the present discounted expected value of
unsold items is a lower bound on the appropriate reserve price. Suppose that the current reserve
price is less than the average resale value of objects that fail to sell in the current auction. Then
the value of marginal objects that fail to sell at the current reserve exceeds the average value of
objects that fail to sell, which by assumption exceeded the reserve. Thus, whenever the average
present value of future resale exceeds the reserve price, the reserve price should be raised to at

least this average value. Raising the reserve will, of course, increase the value of the marginal

> That is, the ex post efficient reserve, r, must satisfy the condition that it equal the seller's value of items that fail to sell at a reserve
7 but would sell at any reserve r-¢ for small €>0, since this equates the seller's value of selling and not selling at the margin. We will
refer to this value as the value of marginal items.



good that fails to sell. Thus, the approach offers a conservative but specific estimate of how
much the reserve can be increased since raising the reserve to the average value will result in a
reserve that is still too low. This is in contrast to the approach in McAfee and Vincent (1992)
which only yields a statistic that determines if some increase in reserve will raise expected
revenues. As an example of how the approach may be used, in Section 3 we offer an illustrative
case of private real estate auctions. The data set we were able to acquire is too small to draw any
truly persuasive conclusions but it shows that, given plausibly available data, the technique is

implementable.

1. The Affiliated Values Model with Endogenous Entry: Bidder Behavior

We assume that there is a large number, n, of potential bidders, sufficiently large so that
even without a posted reserve, it is not an equilibrium for all bidders to bid. For a cost s, each
bidder 7 can obtain a signal x; which is a realization of the random variable X; with cumulative
distribution function F(X;|6), where 0 is a vector of variables not observed by any agent. Bidders
who do not pay s are assumed not to bid, perhaps because they do not learn about the existence of
the auction without paying s. We call 8 the common component. In applications, € represents all
aspects of the item for sale that affect the value of the item but are not observed by the agents.
By convention, higher values of @ correspond to higher values of the good. Bidders' signals are
independently distributed, conditional on 6. We also assume that X, has a smooth density f{X}0).
The value of the good to the buyer, given realized signal x and common component 6, is u(x,6).
The payoff u is assumed to be nondecreasing in all of its arguments.

This model is less general than Milgrom and Weber's (1982) model in two respects.
First, Milgrom and Weber do not assume the signals are conditionally independent. Second,

other buyers' signals do not enter into the payoff u of a given buyer i. We assume, following



Milgrom and Weber, that each of the random variables, X,...,X, are affiliated with the common
component, 0.° As is standard, u, f, s, n and the distribution of & are common knowledge among
the potential buyers.

The model is usefully illustrated by considering the sale of a house. The variables 6
represent all of the unobservable attributes of the house, measured so that higher values of 6
represent higher quality. Potential buyers decide whether to examine the property; those that
conduct an examination incur a cost s. Each buyer forms an estimate of the value of the property,
denoted x, which is a sufficient statistic for everything observable about the house, from the color
of the appliances to the sagging roof.” Armed with the estimate x, buyers submit bids in an
auction. The seller's value of the house if the house fails to sell is denoted o.

The seller holds an auction with reserve price . The auction form may be any of a first or
second price auction or oral ascending bid auction. In such auctions bidders will not participate
unless their signal is sufficiently high, at a level Milgrom and Weber (1982) call the screening
level, which we denote by x,. The screening level is the signal such that, knowing that all other
bidders either didn't participate or observed signals less that x, (and hence didn't submit bids), a
buyer with signal equal to x, just breaks even by paying » for the good.

The timing is as follows. First, the seller announces ». Second, the buyers choose
whether or not to pay a cost s to acquire a signal. Only the symmetric random participation

equilibrium will be considered, in which buyers choose to acquire a signal with probability

® For two random variables, affiliation is also known as the Monotone Likelihood Ratio Property. For general functions as well

as densities, affiliation is called log supermodularity. A twice differentiable function f'is supermodular if the cross-partials are non-

negative. fis log supermodular if log(f) is supermodular. See Milgrom and Roberts (1990) for an exhaustive set of consequences of

supermodularity. Affiliation may be thought of as a strong form of local positive correlation - that is, two random variables are

affiliated if and only if increasing functions of these random variables are positively correlated, on every sublattice of the variables'

1-F(x|0)
Sx10)

domain. One consequence of affiliation, used repeatedly in the present analysis, is that is increasing in 6.

"It is a restriction that x be univariate. To our knowledge, there is no theory of bidding with multidimensional signals that does
not readily reduce to the univariate signal case.



p€(0,1).® Third, informed buyers submit bids; bids less than 7 are ignored. Fourth, the bidder
with the highest (final) submitted bid in excess of 7 obtains the object, and pays a price that will
depend on the specific auction form employed. If no buyer submits a bid exceeding r, the seller
keeps the item and obtains the value o(6). The seller's value o is assumed nondecreasing in 6.
We consider in the theory the sale of a single object, and leave implicit in 6 the means by which
the seller realizes the opportunity cost of sale. Bidders who don't purchase a signal obtain zero.
Bidders who purchase a signal but fail to obtain the object obtain the von Neumann-Morgenstern
utility -s, while bidders who pay p for the object obtain u(x,,0)-p-s.

The variable, 6(0), represents the opportunity cost to the seller of selling the object in the
current auction. Since § will be assumed to be (initially) unobservable to the seller, this
opportunity cost is perceived as a random variable at the time the auction takes place. The
implementation of our approach, however, requires that an estimate of o(6) be available
eventually. This value may become known to the seller through use of the object and the
information could be the source of the data. More likely, however, o(6) represents the revenues
the seller can obtain through the sale of the object at some other institution at some other time. In
applications, this data on later sales is required (and is often available). Note that, in this case, the
assumption that the payoff of a bidder who buys a signal but fails to obtain the object at auction
is -s also requires that this bidder not participate in the subsequent sale event. In the case of real
estate auctions, bidders who have time specific needs for property (they need the house now and
not six months from now) would fall in this category. In other auctions, such as antique auctions,

auction houses themselves move unsold product to different geographical sites and the bidding

8 Asymmetric equilibria, with some buyers participating with certainty and others not at all, exist. These equilibria lead to
qualitatively similar results, and indeed avoid some of the problems associated with randomized participation. However, they also
introduce an "integer problem," in that participation tends to be a step function of the reserve. See McAfee and McMillan (1987c) for
an analysis of such equilibria in the independent private values framework.
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audience may well differ.” Of course, the extent to which this assumption is valid should be
monitored in each specific application.

A standard approach in analyzing equilibria in auctions with a fixed number of bidders is
to conjecture that bids are monotonic functions of signals. This conjecture is then used to
determine a probability of winning the auction for a given bid, b, and to determine the bidder’s
expected utility at the bid, 5. The best response bid is calculated, symmetry imposed and the
resulting bid function is then checked for the monotonicity assumption. In affiliated values
auctions, monotonicity is generally implied by the supermodularity assumption embodied in
affiliation. For a fixed participation ratio, p, we can conduct a similar analysis. Let B(¢;p) denote
an equilibrium bidding function.'® A sufficient condition for B(;p) to be nondecreasing is the log
supermodularity of 1-p(1-F(x|9)),"" or

()  (Vx>x,70'>90,) S0 > Sol®)
1-p(1-F(x|"))  1-p(1-F(x]0))

Condition (1) is a sufficient condition for all the intuitive monotonicities derived below,
and so we assume it here, although we note below when it is used. Affiliation of fimplies (1) for

p=1."2 The meaning of assumption (1) is illustrated in the following thought experiment.

? We are not sure how our results would be affected if failed bidders also participate in subsequent attempts to resell the object.
The additional dynamic incentives render the model very complex. McAfee and Vincent (1997) illustrate optimal reserve price policies
in such environments. If the auctioneer can commit to keeping the object off the market for a long enough period of time, then much
of our analysis would remain essentially valid. If this commitment ability is absent, though, current bidding behavior will be affected
by the opportunity to acquire the object later.

10 In sealed bid auctions, B( *;p) is a function of a bidder’s signal alone. In ascending bid auctions, it is also a function of the bids
at which rival bidders drop out. In this latter case, monotonicity means B(p) is increasing in the signal x for all values of drop out
bids of rivals.

1 See Athey (1995) for a discussion of log supermodularity and its application. The proof that this condition is sufficient for
monotonicity is an adaptation of proofs in Milgrom and Weber (1982).

12 Since Milgrom and Weber (1982) have p=1, (1) holds in their model by affiliation. Inequality (1) must fail to hold globally if
p is very close to zero, and in particular fails for x near its lower bound, as p~0. However, we need (1) only for x>x,; this is feasible
even for p=0. While a somewhat weaker condition will suffice for monotonicity of the bidding function (in particular, the log
supermodularity of (1-p(1-F))"? f* would suffice), (1) is nevertheless the "natural" sufficient condition to combine with affiliation,
especially as (1) is independent of n.



Consider first the event of receiving exactly one bid, B(x,,p), and second, observing no bids at all.
Assumption (1) implies that the expected value of the good given the first event exceeds the
expected value of the good given the second event (this is proved in Lemma 5 below). There are
two circumstances under which a buyer does not bid: either the buyer received a signal less than
x,, or the buyer did not obtain a signal at all. That a buyer obtained no signal is "good news"
(Milgrom (1981)) about the value of the object, relative to the knowledge that the buyer's signal
was very low. Assumption (1) implies that it is better news to see a signal exactly equal to x,,
and hence a marginal bid, than to see no bid at all. Whether assumption (1) is plausible, then,
depends on whether x, is sufficiently large that the signal x, is good news. The value of x,
depends on .

We denote expectation over 6 by E,. We denote expected equilibrium profits of a bidder
with signal, x, by z(x). Note that in environments other than independent private values, this
function will typically differ depending on the auction form that is used. Nevertheless, our results
are robust to this indeterminacy. The screening level satisfies n(x,)=0, or
@ 0= E[(u(x,.0) - r)(1 - p(l - F(x,10)" " f(x,0)].

The participation decision, which determines p, is given by bidders' indifference between
expending s to become informed, and obtaining zero. This implies
3) s = Eein(x) f(x/|0) dx.

Equations (2)x£1nd (3) jointly determine x, and p.

One naturally expects that an increase in the reserve price » would increase the screening

level x, and decrease the participation probability p. That is,

dx
4) L >0, and@<0.

dr dr

However, this “natural” comparative statics does not hold in all environments. Indeed, it is

possible to show that p does not necessarily fall monotonically as » rises. Consider a common



value model as follows. Let u(x,0)=0, 00,1}, Prob[6=0]=.5, F(x|0) =x°!, and consider a
single object sold at a second price auction. Figure 1 shows how x, and p change with r for the
case with the maximum number of bidders equal to five. Although the non-monotonicity in p is
slight it appears robust and is more easily generated with higher values of n than low values.

One reason for the non-monotonicity lies in the peculiar effect that increasing the number
of bidders may have on expected bids and expected seller revenues in the presence of common
values. Steven Matthews (1984) shows that expected buyer profits need not be monotonic in
participation. For example, if a rise in r leads to an increase in x,, holding p fixed, the initial
impact may be to lower bidder profits. In order to continue to satisfy the zero profit entry
condition, it may be necessary either to raise or lower the expected number of bidders by raising
or lowering p depending on the effect of the number of bidders on bidder profits in the particular
environment.

This observation suggests that when there is no ambiguity concerning the effect of
increasing the number of bidders on expected revenue, then the ambiguity of the impact of » on
x,, and p also disappears. With second price auctions, under private values, even with affiliation,
this is indeed the case, as the following lemma shows. Lemma 1 does not require assumption
(1)

Lemma 1: Suppose u(x,0)=x, Then (4) holds in second price auctions.
All proofs are contained within the appendix.

It is readily shown by differentiating (2) that at least one of the inequalities in (4) must

hold. In addition, locally around p=0, (4) holds, as we demonstrate below for second price

auctions. This result depends on (1) holding. As p-0, inequality (1) requires that x, be

13 With private value second price auctions, equilibrium bid functions are independent of the number of bidders. It is not known
if a similar result to Lemma 1 can be shown for the case of first price auctions. Pinkse and Tan (2000) have shown that expected
revenues can fall as the number of bidders increases in affiliated private values first price auctions, so the intuition suggests that we
cannot always be assured that (4) holds in this case.
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sufficiently large. For example, suppose 6 has support [6,,0,]. For F(x]0) =x°"', (1) holds if

~1/(0
X, >e O

V. Similarly, if F(x0) =1 - e, (1) is equivalent to x, > 0,,/2.
Lemma 2: For s sufficiently large, so that p is close to 0, (4) holds in second price auctions.

There is a possibility of multiple solutions to (2) and (3), because expected buyer profits
need not be monotonic in participation. We ignore this complication in the remainder of the
analysis. Stability requires that, as participation increases, then expected profits fall, for
otherwise a slight increase in bidders' beliefs about participation would lead to increased
participation, reinforcing the expectation. Given stability,'* in the appendix, there is a simple to
state, but difficult to interpret, sufficient condition imposed on the distribution F for x, to rise and
p to fall with r.

2. The Effect of Reserve Prices on Seller Profits.

Since the ex ante surplus of buyers is zero, the seller obtains the gains from trade net of
entry costs.”” Thus the seller wishes to select an efficient auction. Intuitively, this requires that
the seller sell only when the expected value of the object to a bidder exceeds the seller's value,
denoted o(f). However, we assume that the seller does not know the realization of 6, and thus
cannot trivially set an ex ante efficient reserve price.'® Denote the seller's surplus by V.
Assuming that the bids are monotonic in bidder signals and exploiting the fact that, in

equilibrium, ex ante bidder profits are zero, a useful expression for V¥ is

(3 ¥ = Ejo®) + f(u(x,e) ~6(0)n(l - p(1 -F(x[0)))" ' pfx[0) dx - nps

r

' Our formulation of stability depends not on (3) directly, but on (3) with  replaced with the value solved out from (2).
15 A similar result is noted by McAfee and Vincent (1992) and Levin and Smith (1994).

16 1£ the seller knows 0, Milgrom and Weber (1982) show that the seller should announce 8 to the bidders, in an environment where
participation is exogenous.
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Thus, the seller's payoff is the value of not selling, 6(6), plus the net gains from trade when trade
occurs, u-c, evaluated at the highest signal received, minus the cost of buyer participation, nps.

Expressed as in (5), the seller's value depends on the reserve » only through the
dependence of x, and p on r. This fact explains why the analysis does not rely on the specific
form of auction used. Note, however, the result does not imply that seller expected revenues are
independent of the auction mechanism. The failure of revenue equivalence in affiliated auctions
implies that different auction mechanisms will generate different values for x, and p for a given
reserve price, r. For example, hold x, and r fixed, and consider the equilibrium value of p from a
first price auction. Since we know that expected payments in second price auctions are weakly
higher than in first price auctions, it must be the case that expected bidder profits would be lower
at the same value of p. Since this value of p yielded zero profits including entry costs in the first
price auction, the same values of x, and p can not represent an equilibrium in a second price
auction.

Equation (5) makes clear that the effect of the reserve price instrument for a seller’s
expected revenues depends on how it changes x, and p. We have shown that these effects can be
ambiguous. In this section, however, in this section we explore the consequences of changes in 7,
when x, and p change with 7 in the expected ways. Lemma 3 characterizes the effects of changes
in x, and p on the seller's payoff, which is used in establishing the effect of a change in the
reserve, using (4).

Lemma 3: Assume (4) holds."

6) S_j’ = “E,[(r - 5(0)n(l - p(1 - F(x,[0)))" ' pf(x,]0)],
8‘1‘ n-1
(7 % < Ey[(r-o(0)n(1-p(1-F(x,0)))"" (1 -F(x,[0))].

"The provided proof of Lemma 3 is for second price auctions. A similar proof holds for first price and oral auctions and is available
from the authors on request.
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Lemma 3 computes the value of increasing both the screening level x, and the
participation probability p to the seller, and in both cases relates these values to the difference
between the reserve price and the seller's value. Increasing the screening value increases the
seller's payoft if and only if the seller's value is less than the reserve price, evaluated at the
circumstance where a buyer is just indifferent between paying the reserve and not purchasing
(that is, the seller's expected value for the marginal property).

The reason that (7) holds with an inequality rather than an equality arises from linkage
principle arguments. Consider the pure common values case, so ©,=0. In this case, adding an
extra bidder increases the likelihood that the good sells, which provides an increase in gains from
trade accounted for in (7). However, additional participation also increases the likelihood that
there are two or more bidders, a socially wasteful duplication of entry costs. (This loss arising
from duplication in entry costs is mitigated when bidders with higher signals have higher values.)
Let Xy, X5, represent the highest and second highest signals, and B the price paid. Then there is
a social efficiency gain of u(X,),0) - u(X,,0) when a buyer with a higher signal is added by
increased participation (this effect is zero in the common value extreme case). However, part of
the gain, u(X,),0) - B, is the winning bidders' profit which does not accrue to the seller but goes to
pay the costs s of participation, and therefore should be subtracted from the gains from trade for a
net gain of B - u(X,,0). But the average value of this expression is negative in general. In second
price private value auctions with or without affiliation, B =u(X,,0) and the term vanishes. With
some common value element, it is well-known that conditional on knowing the highest signal, B
< u(X,),0) and therefore the term is negative on average. In first price auctions, as long as there is

affiliation the term is negative even in the pure private value case.'®

Does a second price auction with ex post efficient reserve attract too many bidders? The answer is yes. Suppose the reserve price
is chosen in such a way that (6) is zero, which is the ex post efficient reserve price. Then the right hand side of (7) is nonpositive.

13



We are now in a position to characterize a lower bound on the optimal reserve price,
based on historical data for auctions of similar items. Theorem 4 depends on both (1) and (4).
Define Ex to be the expectation over # conditional on the highest signal being x.
Theorem 4: Fix a reserve price r,, and suppose thatr< Exro [6(8)] =0, that is, the expected

value of properties that just fail to sell is greater than the reserve. Then ay > 0. Expected

dr |rosr§ %
seller profits rise with an increase in the reserve up to o, .

Theorem 4 indicates that if the expected value to a seller, o,, of properties that just fail to
sell at a reserve price, r,, is greater than r,, then seller expected profits are rising in the reserve
price for any reserve between 7, and g,. In Figure 2, we graphically illustrate Theorem 4. The
curve represents the expected value of marginal unsold items, £[c(0)]. This depends on the
reserve price through its effect on x, and p. If the reserve price is less than E[c(0)], increasing
the reserve to E[o(0)] will still leave the reserve below the optimal one, denoted »*. That
E[o(0)] is increasing in 7 is a consequence of affiliation, the monotonicity of &, and (4).
However, the uniqueness illustrated in Figure 2 cannot be guaranteed without placing further
restrictions on G.

Theorem 4 implies the following. Consider sales of houses, and suppose that the reserve
price is less than the present value of resale for houses right at the margin, i.e. those with a bidder
just indifferent between bidding and not. Then it is profitable for the seller to raise the reserve
price to the present value of resale for those houses.

By itself, the implication of Theorem 4 would be difficult to implement empirically,

because it is difficult to establish which houses were at the margin, that is, which houses had a

Consequently, if the reserve price is chosen in such a way that the seller's payoff is maximized with respect to the screening level, then
the participation probability p is too high. This observation, which appears empirically useless, does not depend on either assumptions

(1) or (4).
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bidder indifferent to bidding on them."” However, the average value of unsold houses is less than
the value of marginal unsold houses. While this proposition seems intuitive, it in fact relies upon
inequality (1) for a proof. The reason the proposition might be less than obvious is that failing to
attract any bidders at all may be a result of no bidders becoming informed, which could be good
news about the value of the property, as compared with the event of attracting one marginal
bidder. However, assumption (1) implies that attracting the marginal bidder is overall better

news than the event of attracting no bidders at all, as the following lemma shows.

L CEy[o(0)(1-p(1-F(x,10))" " f(x,100]  E,[c(®)(1-p(1-F(x,[0))"] _
emma 5: > c.

Ey[(1-p(1-F(x,10))"" f(x,10)] Ey[(1-p(1-F(x,0)))"]

Lemma 5 shows that the value of the good to the seller in the event that no bidders are
attracted is less than the value of the good to the seller in the event that one marginal bid is
attracted. Combining Theorem 4 and Lemma 5, we have:

Corollary 6: Suppose that the average value ¢ of unsold items exceeds the reserve price. Then
raising the reserve price to o increases seller revenue.

Corollary 6 depends only on observables, and contains a testable prediction. In particular,
the average value fo the seller of unsold items is often observable by the seller. In the data
considered below, we observe houses that don't sell in an auction, and the later sale of these
houses. From data on the later sale price, we construct a present value, and find that the present
value to the seller of real estate that does not sell is about 93% of appraised value. This estimate

is a lower bound of the appropriate reserve price.

' McAfee and Vincent (1992) propose a methodology for solving this problem, for common value auctions. The strategy requires
the observation of ex post valuations, such as are available for the OCS oil auctions studied by Hendricks, Porter and Boudreau (1987).
The technique is to look at the properties that received bids close to the reserve price, and estimate the distribution of ex post valuations
conditional on a marginal winning bid. The entire database is used to estimate the expected winning bid conditional on the ex post
value. Given this distribution of values for properties receiving marginal bids, it is then possible to estimate the average winning bid
of marginal properties, which, with appropriate discounting, is approximately what could be expected if the properties were re-auctioned
later.
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What about the reverse implication? There are two obstacles in attempting to apply the
analysis to learn when reserve prices should be lowered. Recall Lemma 3. With some common
value element, the inequality in (7) will be strict because of the linkage principle. Thus, Theorem
4 cannot be extended to learn when the reserve price should be lowered even if data was
available to show that the seller’s use value of objects that just fail to sell on the margin was
below the reserve price. Second, even without this hurdle, Lemma 5 shows us that if all we
know is the average value of unsold properties, then learning that the reserve price lies above this
average value does not warrant concluding that the reserve price also lies above the value of
marginally unsold properties. The analysis, therefore, offers only a one-directional test.

Corollary 6 and Theorem 4 both state quite intuitive economic propositions. Effectively,
both results state that one shouldn't sell items for less than their value in an alternative use.
These propositions hold in a broad set of circumstances. It is remarkable how difficult it is to
establish what seem like obvious propositions. The source of the difficulty, of course, is the
endogenous entry of bidders; alterations in the reserve price may have adverse impact on
participation in auctions, and an intuition arising from models with exogenous participation
doesn't account for this effect.

Typically, the seller who fails to sell in the current auction will generally attempt to sell
again later; this is the case in the real estate auctions we present below. It is important to realize
that our theory accommodates this case. The theory itself accounts for the sample selection bias,
in that the distribution of @ for items that fail to sell explicitly depends on the reserve price.*

Thus, we are considering the appropriate class of items that fail to sell. Furthermore, the theory

20 Recall, as noted above, we require that the fact that unsold objects may be put up for sale at a later time does not alter bidding
behavior in the initial auction. In the First Interstate Bank data on real estate auctions, the average time to resale is about 3 months. In
other real estate auctions such as FDIC distressed property, the average time to resell is over a half a year. For bidders on properties

who are time sensitive, this assumption will be valid.For an analysis of dynamic behavior in auctions see McAfee and Vincent (1997).
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suggests a way to enhance revenue, and therefore suggests a means of increasing the value of
items that fail to sell, that is, increasing 6. As the theory will suggest that the average value of ¢
conditional on no sale is a lower bound for the optimal reserve, the historical average value of ¢
remains a lower bound on the optimal reserve after steps are taken to increase o.

Is it possible, following a failure to meet the reserve price in the first auction, for the
average sale price in the second auction to exceed the reserve price? The answer is yes if there is
enough of a private value component. Consider the following simple example. A seller has zero
use value for a property and attempts to sell it in two auctions. The auctions are separated enough
either in time or space so that a different group of bidders (both of size n) participate in each
auction. Suppose the environment is independent private values with a support, say, of /0, ). In
the final auction, with an entry probability of p</ when the reserve price is zero, the fact that the
seller’s expected revenue corresponds to social surplus implies that her optimal reserve price is
zero.As long as s is not too large, the expected sale price, p, will be strictly positive. The
discounted value of this price serves as o in the first auction (the IPV assumption implies that o is
independent of #). Now consider the first auction. For any reserve price, »&(0,0p) where 0 is the
seller’s discount factor, the average resale price will exceed the reserve and the seller can
increase profits by raising the reserve.

The assumption of some private values is important in the argument. To see this, modify
the above example by making the environment a pure common value one instead, so that
u(x,0)=0. In this case, conditional on a failure to sell at reserve price 7 in the first auction,
equations (1) and (2) imply that the conditional expected value of € is below 7. Since the

conditional expected value of @ is an upper bound on the expected revenues in such auctions as
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long as bidders in the second auction are aware that the property had failed to sell in the earlier
auction, we should never expected average resale prices to exceed r.!

There are several limitations of the model that should be acknowledged. We assume
symmetry among the buyers. While this may be realistic for a given type of buyers, house
auctions attract both buyers who desire a house to inhabit, and dealers or brokers, who will sell
any properties they buy. These two types of buyers may have distinct value distributions, that is,
both u and F may vary across the two classes. In addition, in our model, information collection
is a discrete decision. In practice, information collection might be better modeled as a
continuous variable. Moreover, we have assumed symmetry in the information collection, or
participation, cost s. While we consider that constant participation cost is a better model in many
applications than an exogenous set of bidders, a more general model than either case would posit
a distribution of participation costs. We expect the analysis to be robust to such increasing costs,
but the complexity of such a model is daunting.” Finally, we remind the reader that condition (4)
is a sufficient condition for the result. If either participation falls with an increase in the reserve
price or the screening level falls with an increase in the reserve, then the impact of a rise in the

reserve may (but not must) be reversed. We believe that (4) is the most likely result.

3. An Illustrative Example
As an example of how Corollary 6 can be implemented to determine if a reserve price
was too low, we collected auction information from a data set of first time sales from four

auctions with published reserve prices. The data come from four oral auctions held by First

2! We owe a debt to an anonymous referee for inducing us to discover this implication.

22 One reason to expect that Corollary 5 would continue to hold in a model with a distribution of participation costs is that the seller
now has some monopoly power, and thus has an incentive to raise the reserve price above the socially optimal level. Thus, our analysis
of the socially optimal reserve should remain a lower bound. The analysis, however, is even more complicated than the current study,
for there must now be a critical level of the participation cost, so that agents with lower participation cost choose to participate.
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Interstate Bank between April 1990 and September 1991 for properties throughout Texas.
Although each auction was for multiple properties throughout Texas (1036 properties), our
sample is from sales in Travis, Harris and Dallas counties since we obtained access to their
central appraisal office records. In all four auctions, registered bidders are required to provide a
$3000 deposit for each property they plan to bid on. All sales below a predetermined threshold
(two auctions at $15,000 and two at $25,000) had to be purchased with all cash within 10 days.
For sales exceeding such thresholds, the seller is required to provide a 5% deposit and has 30
days to close. The bidder’s inability to provide with the remaining cash or financing within the
time period resulted in the forfeit of his deposit. Many of these properties were poorly described
in the auction brochure; there is no reason to think that a poor description in the auction listing is
correlated with any other variable, but we can not rule out such a correlation (and consequent
sample selection bias). In order to keep the type of objects as homogeneous as possible, we
restricted attention to sales of buildings, ruling out sales of land alone, yielding a total of 26
properties offered at auction. Within this subset, the only class of properties that failed to sell
were residential properties.

Of the 26 properties for which we have data, 21 sold in the auction and 5 sold later. Only
residential properties failed to sell. One problem with the specific data is that, because of the
way the set was constructed, while we have all the properties that did not sell at auction and
which later did sell, we cannot be absolutely sure that we have listed all the properties that did
not sell. If there were properties that did not enter the data set because they were never sold, our
estimates of the value of unsold properties will be biased upward.

The reserve price averaged 48% of appraised value for the properties that sold, and 60%
for the properties that didn't sell, suggesting that high reserve prices significantly increased the

likelihood that the property failed to sell. The present discounted average sale price of properties
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that initially failed to sell was 93% of their appraised value ** The average number of days to
resale is 125 days. Table One gives the data for properties that failed to sell in the first auction.

Table One: First Interstate Resale Data.

Reserve PVSP Appraised Value Days to Resale
140,000 178,832 182,130 365

15,000 41,340 30,879 107

20,000 30,746 45,054 60

65,000 82,422 103,630 51

20,000 25,844 30,000 44

We computed the variable PVSP for unsold properties using an annual interest rate of
5%. Corollary 6 then offers a guide to test whether the reserve price that was used on properties
that failed to sell was too high. The sample average of »-PVSP over the five unsold properties is -
8-19837 with standard error, $6554. The theory suggests a one-sided test of the hypothesis that -
PVSP is positive. Observe that in all cases, it is negative. The critical ¢, ; value is -2.13 while
the sample yields a test statistic of -3.03 suggesting, in this case, that raising the reserve price
would have increased expected revenues. **
4. Conclusion

In a bidding model with endogenous entry, this paper demonstrates the quite intuitive
conclusion that the seller should post a reserve price at least as large as, and generally strictly
larger than, the average value (to the seller) of goods that fail to meet the reserve. The intuition

for this conclusion rests on two observations. First, if entry into the auction is endogenous, ex

2For the properties sold by the First Interstate, we obtained the assessed value prevailing prior to the auction from county records;
these are generally updated every two years.

24 We also tested the hypothesis that (R-PVSP)/AV is positive. The corresponding sample mean, standard error and test statistic
are -.33, 0.15 and -2.3, also generating a rejection.
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ante bidder profits are zero, and thus the seller captures all the gains from trade. For this reason,
the seller wishes to post a reserve that maximizes the expected gains from trade. Second, this
reserve is at least the seller's alternate use value. This second observation is deceptive, for a
change in the reserve price will generally alter the bidders' participation decisions, which affects
the sellers' surplus. Indeed, the seller generally wishes to post a reserve strictly higher than the
seller's value of items retained at the margin, because this reduces the duplication of investment
in information by bidders. Under private values, the seller wishes to post a reserve between the
seller's value for marginal items (where the highest bidder is just indifferent between paying the
reserve and not) and the average value to the seller of items that sell at the reserve price.

In addition, we demonstrated that the lower bound is at least as large as the average value
of items that fail to sell. This result seems intuitive, in that the value of items that just fail to sell
at the posted reserve would presumably exceed the value of items that didn't come close to
selling. However, this intuition is complicated by the fact that there are two reasons an item
might fail to sell. First, a bidder considered bidding and decided the reserve was too high. The
value of these items is less than the value of items at the margin of not selling. Second, an item
will not sell if no bidder considered purchasing it. These items have a value distributed like the
ex ante value, which is potentially larger than the value of items at the margin of not selling.
However, under the sufficient condition for the equilibrium bidding function to be monotonic,
the first reason dominates the second, and on average, items that fail to sell are worth less than
those right at the margin of not selling.

We, thus, have a testable prediction: if the reserve price is less than the average value to
the seller of items that fail to meet the reserve in previous auctions, raising the reserve price to
the average value of unsold items will increase seller revenue on average. This prediction is also

a prescription for raising seller revenue. We illustrated the theory using data on auctions with
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published reserve prices. The test is not as powerful as one might desire, because of limited
sample size, some possibility of selection bias in data acquisition, and because of alternative
explanations for expected sale prices increasing in the reserve. Nevertheless, the example
suggests that increasing the reserve price will significantly increase the expected present value of
sale.

We consider that the auction model with endogenous entry is a significant improvement
in realism over models with exogenous participation. Endogenous entry implies that the seller
maximizes revenue by maximizing ex ante social surplus, which simplifies parts of the analysis.
However, endogenous entry also complicates the analysis, and plausible economic propositions,
such as an increase in the reserve price decreasing bidder participation, appear difficult to prove
in general. It seems evident that log supermodularity, so useful in environments with exogenous
participation, is inadequate for environments with endogenous participation, and further work on
the theory of auctions with endogenous participation is warranted. Finally, while endogenous
entry represents an increase in realism, our model is hardly an exact representation of real
auctions, as described by Ashenfelter (1989).

The model contains two endogenous variables, the probability of participation p and the
screening value x,, but we considered alterations of only one exogenous variable, the reserve
price r. It is thus likely that using a second control variable, such as an entry fee, will permit
better seller optimization. As a practical matter, most auctioneers do not charge entry fees,
although there are notable exceptions. If optimal entry fees turn out to be negative, charging the
negative entry fee is subject to a severe moral hazard problem, with people participating only in
order to collect the negative entry fee. Moreover, establishing the effects of entry fees would

require quantitative, rather than qualitative, information on the signs of the comparative statics in
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(4). Nevertheless, an attempt to establish bounds on optimal entry fees appears to be an

important unsolved problem.
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Appendix

Proof of Lemma 1: Substituting u(x,0) = x into (2), we have x, = r. From (4), B(x)=x. Thus, by
3):

s = B[ [raimfe-ne-pa-Fe oy

+ [ 0= -p(1-FEON pf010) dd ]

r

= 5[ [el@ A -p( -FEo) ! - (- -p-Fop) |

r

+ [A-p(1-Fo)" &
= £, [ [(1-Fao) (1 -p(1 -Fxloy)y dx |

The right hand side is obviously decreasing in both » and p, which gives a unique solution with x,
= r increasing in 7, and p decreasing in 7. |

Proof of Lemma 2: Note that (1) implies f{x,|0) is nondecreasing in 6. Because of the complexity
of some of the terms below, we adopt the convention that u, F' and f are evaluated at (x,,0) and
(x,/0) unless otherwise indicated. We also denote £, by E. Recall that
~ E()(1-p(1-F))""
o - EO0 DYy
E(1-p(1-F))" " f

We will use the following lemma several times.

Lemma A: EQ-F) > EA-F)f | Ef’

(EQ-F)? E(-F)Ef (Ef?

Proof of Lemma A:
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= -(n-D[Eu(1-F) - EuE1-F] < 0.

7, dx % dx
Thus, 1 = Oku &%, @@, and either —- > 0 or dp 0.
ox, dr op dr dr dr

Eliminate » from (3) by substituting »=Eu to obtain
(Al) S= Eff(Xle)( (u(x,0)~Ew)(1-p(1-F))""!
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< 0.

To establish (4), it suffices to show that =
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Since < 0, it suffices to show that

as
8p‘p:0

+ f[u(x,e) ~BW)(n-1) f(y[0)dy |dx

= (m-1)EuE(1-F)* - E(1-F)

OEu|
0

p ‘p:()

- (n—l)E}f(x|9)u(x,9)(1 ~F)dx
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35|

Note that @()=0. Thus, to show that —=
8 p ‘ p=0

<0, it suffices to show that ¢'(x ) > 0 for all x,.
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The first line is positive by lemma A, the second since
Euf®  Euf Ef?
Ef  Ef Ef
and the second part of lemma A. The third is positive by lemma A and the fact that # and % are
increasing by affiliation. That the fourth is positive requires an argument. The fourth term’

comes in the form Eafy, where a, B, y are all increasing, >0, and Ef = Ey = 0. Define an
expectation
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This shows the fourth term is positive, as desired. Thus ¢'(x,)>0, and
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X

Sufficient Condition for (4):

Assuming stability implies that 05/0p <0, it is sufficient to prove that 0S/ox, < 0. As before, we
suppress the arguments (x,|0) and (x,,0). Using (2) and (A1),

s _ . 1-F ~( 1-F\| 0Eu
1-p(1 " Dp(B(x)-Eu)E -E
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Since u, is nonnegative, we may drop it. The resulting sufficient condition becomes
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Since (A2) is linear in u, (A2) holds if and only if (A2) holds for a basis of u. A convenient basis
is the indicator functions, u = 1 if #>6", and 0 otherwise. Thus, a sufficient condition for (4)
(when combined with stability) is that, for all §°,

. . E
E‘[/_X|eze*}_E~[é}+(n—l)pl— Lp0-F) R f 0>0" i—L |
f f EFXEp f 1-p(1-F) 1-p(1-F)
S 1-p(1-F)

This condition is also necessary for (4) to hold for all nondecreasing u.

Proof of Lemma 3: Equation (6) is a routine computation from (5) using (2). We show (7) for the
case of second price auctions. The argument foran oral auction is similar but more tedious.
McAfee and Vincent (1992) show the result for first price auctions. First integrate (3) by parts to
obtain:

(A3)s = E, [(1 ~F(x,0)) (u(x,.0) -r) (1 -p(1 - F(x,0)))" "
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E [(u(x,0) - BG))]E, [(1 -p(1 ~F(x]0)))" > f(x[0)*] = 0.

Integrating (5) by parts,
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¥ = E,[o(0) - (u(x8) - c@®)(1 - (1-p(1 -Fxo)y)

Xy

+ fux(x,e)(l ~(1-p(1 —F(x|e)))")dx} - nps
= Ey[0(0) + (u(x,.0) - @)l - (1 -p(1-F(x,10)))')

+ fux(x,e)(l ~(1-p(1 —F(x|e)))")dx] - nps.

g_f = nE, (u(x,.0) - 6(®)(1-F(x,[0))(1 -p(1 ~F(x,10))""

+ }ux(x,e)(l -p(1-F(x]0))" " (1-F(x|0)) dx - s]

(43) ;
= B [r-0(0) (1 -F(x,0) (1 -p(1 - F(x,0)))"

- f(l - F(x]0)) (u(x,0) = BGx)) (n = 1)(1 - p(1 ~F(x[0)))" % pf(x[0) dx ]
(44) X,
< nEy[(r-c(0)(1-F(x,0)(1-p(1-F(x,[0))" "]
Proof of Theorem 4: First note that

Ey[o(0)(1-p(1-F(x,10))" " (1-F(x,]0))]
Ey[(1-p(1-F(x,]0)))" ' (1-F(x,0))]

E (G)I_F(xr|e)(1 (1-F(x,10)))"" f(x,10))
o - -r'x X
_ ’ S(x,10) P ' " Ey[(1-p(1-F(x,[0)))"" f(x,10)]
Ey[(1-p(1-F(x,[0))" " f(x,0)] Ey[(1-p(1-F(x,10)))" ' (1-F(x,10))]
_ 1-F(x,10) Ey[(1-p(1-F(x,[0))"" f(x,10)]
= E|o(0) x
Jx,[0) Ey[(1-p(1-F(x,10))" " (1-F(x,0))]
_ _ _ n-1
zE[c(e)]El Fx,0)1 - Ey[(1-p(-F(x,[0))" f(x,[0)] - E[o(0)].
J(x,19) Ey[(1-p(1-F(x,[0))" ' (1 -F(x,0))]

Thus, using (4) and Lemma 3,
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dy _ o dx, 9% dp

dr ox_  dr dp dr

d
dx” Ey[(c(0) - n(l -p(1 -F(x,10))" ' pf(x,0)]

7

\2

+ %Ee [ - 6(8)n(1-p(1-F(x,10)" " (1-F(x,10))]

dx .
= dx” E[(5(0) - N1 E,[n(1-p(1-F(x,10))" ' pfix,]0)]

7

+ ( - %) Ey[((0) - r)n(l -p(1 -F(x,10))" ' (1-F(x,10))]

dx .
dx” E[(5(0) - N1 E,[n(1-p(1-F(x,10))" ' pfix,]0)]

7

\2

+ ( - %) E[(6(8) - NI Ey[n(1-p(1 -F(x,[0))"" (1 -F(x,10)].

Thus E[6(8) -#]>0 = 62—? > 0. Since E[c(0)] is increasing in x, and decreasing in p, E [c(0)]

,
is increasing in r. Thus, increasing » from r, to o, leaves d¥/dr > 0. |

Proof of Lemma 5:

Ey[o(0)(1-p(1-F(x,10))"" f(x,10)]
Ey[(1-p(1-F(x,]0))" ' f(x,10)]

J(x,10)
1-p(1-F(x,0)) Ey[(1-p(1-F(x,6)))" ]

Ey[(1-p(1-F(x,16)))" ] Ey[(1-p(1-F(x,10))"" f(x,0)]

E,|o(0) (1-p(1-F(x,]6)))"

g /A0 A ~p( ~Fx,[0))"
, Ele®)d-pd-F&0))"] ’ 1-p(1-F(x,]0)) Ey[(1-p(1-F(x,10)))" ]
Ey[(1-p(1-F(x6)))"] E [(1-p(1-F(x,10)"]  E,[(1-p(1-F(x,10))" " f(x,[0)]

_ Ey[o(®)(1-p(1-F(x]6)))"]
Ey[(1-p(1-F(x]0)))"] |
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Figure 2: An illustration of Theorem 4. Given an initial reserve r and a realized o, the
reserve should be raised to at least 6,. Note that the optimal reserve, r', exceeds the
solution to » = E[c(0)|r].
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