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In both economic and military situations, agents may try to mislead rivals
about their true types or plans, whatever they may be. We consider a simple
model in which one player attacks and the other player defends. We show that
such environments have two types of possible equilibrium behavior, depending
upon the signaling technology. If the signal is not very revealing about the
attacker’s plans, then the attacker always invests more resources in attack
than in misdirection. If the technology is revealing, then the attacker does
not always feint, but when he feints, he invests more than half of his resources
into misdirection. Comparative statics also depend on whether the technology
is revealing.

“Always mystify, mislead and surprise the enemy, if possible.”
—General Thomas J. “Stonewall” Jackson

“Create havoc in the east and strike in the west.”
—Sun Tze

1. Introduction

In the past two decades, economists have used signaling models to
rationalize and understand a number of frequently practised business
strategies. For example, Milgrom and Roberts (1982) show that limit
pricing can be explained as an attempt by an incumbent firm to signal
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that its costs are low and hence, that entry is likely to be unprofitable.
Their model can, with small changes, be reinterpreted to explain preda-
tory pricing. In a model, where entrants use their current profits to infer
future profits, Fudenberg and Tirole (1986) show that the incumbent
firm will try to manipulate the entrant’s inference by lowering its price,
thereby encouraging the entrant to exit the market. Saloner (1987) uses a
variant of the Milgrom-Roberts model to explain why predatory pricing
can lower a firm’s costs of acquiring a rival. Following the seminal
work of Milgrom and Roberts (1986), a large literature has developed
showing how “burning money” in the form of image advertizing can
signal consumers that the featured product is high quality.

This paper develops a new kind of signaling model to study feints,
a commonly used strategy in conflicts. Feints are offensive actions con-
ducted with the purpose of deceiving rivals as to the location (or time)
of the main offensive action. They are ubiquitous in military campaigns
and sports, but also occur frequently in political and legal conflicts.
In business, feints are likely to occur when a firm is trying to enter a
new market or market a new product but wishes to conceal the true
nature of its investment plans to prevent a rival from counterattacking
effectively while it is still vulnerable. For example, by the end of the
1870s, the Standard Oil Trust had locked up most of the transportation
and refining of oil in Pennsylvania, at that time the world’s largest
producing region. A group of producers attempted to circumnavigate
Standard Oil by building a 110-mile pipeline to connect the oil regions
to the Pennsylvania and Reading Railroad. This plan was audacious,
because no one had ever attempted such a large pipeline, but also
because the group attempted to keep Standard Oil in the dark about
the scale and location of the pipeline. Fake surveys were taken in order
to confuse Standard Oil of the route of the pipeline so that it could not
block it. In May 1879, the Tidewater pipeline opened. It “not only caught
Standard by surprise, but also meant that its control of the industry was
suddenly again in jeopardy” (Yergin, 1991, p. 43). Standard acquired
Tidewater in 1883. Other examples include pharmaceutical firms patent-
ing “dead-end” products (Langinier, 2001) to mislead competitors’ R&D
expenditures and oil firms surveying tracts that they have no intention
of bidding in order to confuse potential rivals as to which areas they
should pursue.

A famous military example was the Allied invasion of Nazi-
occupied France. The most natural locations for the invasion were Pas
de Calais and Normandy. The office of the Chief of Staff of the Supreme
Allied Commander (COSSAC) decided on Normandy. However, in
order to mislead the Nazi military into continuing to fortify Calais at the
expense of Normandy, the Allies developed an ambitious plan named
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Operation Fortitude. Operation Fortitude was a feint. As part of this
operation, a mythical “U.S. 1st Army Group,” led by George Patton,
was created. This army consisted of plywood airplanes and inflatable
tanks located near Dover, and a vast armada of rubber landing craft
located in the Thames River estuary. Patton’s mythical force produced
large volumes of coded radio traffic for German interception, and there
were extensive real military maneuvers near the location of the ersatz
army. False information was fed to known enemy agents. The operation
worked. The German high command, led by Field Marshall Wilhelm
Keitel, believed that the invasion of Normandy was a feint, a diversion
from the real invasion to come at Calais. Nineteen German divisions
remained at Pas de Calais after D-Day, the initiation of the Normandy
invasion. The Allies continued bombing Calais even after the invasion
began, with two bombs dropped at Calais for every bomb dropped at
Normandy, successfully maintaining the ruse for several critical days.1

We model feints as a sender-receiver game with noisy signals. The
sender has to allocate resources between at least two alternatives. The
sender’s type determines which alternative is preferred. The receiver
cannot observe the sender’s type but he does observe a noisy signal of
the sender’s allocation and can draw inferences about his type from the
observed signal. The receiver’s inference matters to the sender because
the receiver’s gain is his loss. Thus, each sender type has an incentive
to mislead the receiver. The distinguishing feature of our model is that
the way in which each type tries to mislead the receiver is to pretend
to behave like the opposite type. For example, the Allies wanted the
Germans to think that they were attacking Pas de Calais but, if they
had attacked Pas de Calais, they would have wanted to be perceived
as attacking Normandy. Similarly, Tidewater wanted to be perceived as
building the pipeline on the route covered by the fake surveys, but had it
intended to build the pipeline along this route, it would have wanted to
be perceived as building the pipeline on the route that it actually chose.

As in most signaling models, we are interested in knowing when
and how much firms are likely to invest in signal distortion, and whether
rivals are misled into taking actions that favor the sender. Our major
result distinguishes two cases. If the signal generated by the sender’s
action is not very “revealing” (in the sense to be made precise), then the
sender pursues a pure strategy and allocates most of his resources to
the preferred alternative. Feints are small and deterministic. In contrast,
when the signal is very revealing, the sender cannot easily conceal his
actions and small feints are not effective. Moreover, large, deterministic
feints are also not effective. The receiver, knowing the sender’s strategy,

1. For more details, see Hatfield (1997).
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understands that the signal is likely to be generated by the feint and
infers that the preferred alternative is the opposite of the one indicated
by the signal. He responds accordingly, which makes large feints a
poor strategy. The equilibrium strategy for senders is to randomize,
sometimes investing all of his resources and other times investing
less than one-half of his resources, in the preferred alternative. The
randomization ensures that his adversary is uncertain about the sender’s
type, and about the scale of the sender’s investment conditional on
his type. Thus, in our model, all sender types feint, and the feints are
sometimes quite successful. Our model can explain both frequent, small
feints and infrequent, large feints.

The comparative static results for the two cases are strikingly
different. The risk aversion of the sender’s rival works to the sender’s
advantage when the signal is noisy but is irrelevant when the signal
is revealing. It might seem that a more revealing signal would always
hurt the sender because the sender is best off when he can act secretly
without generating any signal. This intuition is basically correct for
noisy signaling technologies. But, when the technology is revealing,
the informativeness of the signal works to the sender’s advantage. The
reason is that a more revealing signal makes it easier for the sender to
feint, and hence more profitable.

Crawford and Sobel (1982) and Sobel (1985) show that no commu-
nication occurs in sender-receiver games where messages are costless
(“cheap talk”) and the receiver’s gain is the sender’s loss. Farrell (1993)
used the term “babbling” to describe equilibria of cheap talk games
in which the sender’s message is uninformative. Crawford (2003), in a
paper motivated by our analysis, introduces boundedly rational types
into a zero-sum, cheap talk game and shows that their presence yields
equilibria in which the sophisticated (fully rational) sender lies and fools
a sophisticated (fully rational) receiver some of the time. “Babbling”
equilibria do not arise in our model because signaling is costly. If the
receiver ignores the signal, the sender’s best reply is to apply more
resources to the preferred alternative, because resources devoted to
fooling the receiver are mostly wasted. But, in that case, the receiver
should not ignore the signal but allocate more resources at the alternative
signaled. Thus, in the equilibrium of our model, the signal is informative,
in that the receiver’s Bayes update differs from his prior and he allocates
more resources to the alternative indicated by the signal.

Our model and results contribute to signaling theory. The standard
assumption in signaling models in industrial organization is that all
sender types wish to be perceived as the same type. For example, in
Milgrom and Roberts’ (1982) model of entry and in Fudenberg and
Tirole’s (1986) model of signal jamming, all incumbent firm types want
to be perceived as having the lowest cost because this inference makes
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it more likely that the entrant will stay out.2 Bernheim (1994) and
Banks (1987) study environments in which all sender types wish to be
perceived as the middle type. In Crawford and Sobel (1982), each sender
type wants to be perceived as a higher type, but not necessarily the
highest type. Bernheim and Severinov (2003) study a model of bequests
in which the most desired type may be higher or lower than the sender’s
type, but the desired type is still an increasing function of the sender’s
true type. Models in which the desired type is monotone increasing in
actual type typically possess a separating equilibrium in pure strategies
in which essentially all sender types invest in the signal. By contrast,
in our signaling model, the desired type is a decreasing function of the
sender’s true type: “high” types want to be perceived as “low” types and
“low” types want to be perceived as “high” types.3 We are not aware of
anyone who has studied this class of signaling games, with or without
noisy signals.

The paper is organized as follows. In Section 2, we develop a simple
model of feints. In Section 3, we characterize the equilibrium. In Section 4
we provide some comparative static results. We discuss applications in
Section 5 and conclude in Section 6.

2. The Signaling Model

The generic signaling model consists of two players, one sender and one
receiver, in which the sender’s type is private information. The sender
acts first, and the receiver acts second after observing a noisy signal
about the action taken by the sender. The payoffs to each player depend
upon the sender’s type and the actions taken by the two players. In our
model, each player’s action consists of a division of resources between
two investment alternatives, a and b. Let x denote the resources that
the sender allocates to alternative a. We normalize the sender’s total
available resources to one, so that the balance 1 − x is allocated to
alternative b. The receiver then receives a private, binary signal S ∈
{α, β} about the allocation of the sender’s resources. The signal yields
information about the relative allocation of resources, that is, which
alternative is getting more resources. Define

p(x) = Pr{S = α | x}

2. Matthews and Mirman (1983) introduced noisy signals into the standard signaling
game.

3. Von Neumann and Morgenstern (1944) introduced the term “inverted signalling”
to describe environments in which each sender type wants to signal to the receiver that
it is the opposite type. Their main example is poker, where a weak player wants to give
a (false) impression of strength and a strong player wants to give a (false) impression of
weakness. Of course, they consider only zero-sum, complete information games.
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as the probability that the receiver observes signal α conditional on the
sender allocating x units to alternative a. We will impose the following
regularity conditions on the signaling technology p.

Assumption 1: (i) p is strictly increasing and differentiable, (ii) p(z) +
p(1 − z) = 1, (iii) p(0) = 0.

Condition (i) states that the probability of generating signal α in-
creases with the amount of resources allocated to alternative a. Condition
(ii) imposes symmetry. It implies that the probability of the receiver
getting signal α when the sender allocates z units to alternative a is the
same as the probability of getting signal β when the sender allocates z
units to alternative b. Note that this condition implies that p( 1

2 ) is equal
to 1

2 . Condition (iii) states that if the sender allocates no resources to
alternative a, then the receiver is certain to get signal β. By symmetry,
if the sender allocates all of his resources to alternative a, the receiver is
certain to get signalα. In other words, the sender has to allocate resources
to both alternatives if he wants the receiver to be uncertain about which
alternative is getting more resources.4

In response to the signal, the receiver divides his resources between
the two alternatives. We assume that the receiver has the same amount
of resources available as the sender. Let ys denote the resources allocated
to alternative a conditional on obtaining signal s, with the balance 1 −
ys allocated to b.

The sender’s payoff is a weighted average of his investments in
the two alternatives:

π (x; q , yα , yβ) = q [x − (p(x)yα + (1 − p(x))yβ)]

+ (1 − q )[1 − x − (p(x)(1 − yα) + (1 − p(x))(1 − yβ))]

= (2q − 1)[x − (p(x)yα + (1 − p(x)yβ)],

where q ∈ [0, 1]. Here q indexes the sender’s type and measures his
preferences for alternative a over alternative b. In the absence of a
receiver, high types obtain a higher payoff from investing in alternative a
and low types obtain a higher payoff from investing in alternative b. The
cumulative distribution of q is denoted by F. It is assumed to be atomless,
with support [0, 1], and a density function f which is symmetric around
1
2 . In the presence of a receiver, the sender’s profits from each alternative
increases with the size of his own investment and decreases with the size

4. Condition (iii) is not essential. If the signal is random even without an expenditure
of resources, the sender receives some free feinting. This randomness may be enough for
the sender, in which case no feinting occurs, but otherwise the analysis is very similar to
the present results. This issue was explored in an earlier version of the paper.
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of the receiver’s investment. We allow the sender to randomize over the
allocation of resources given his type q and denote such an allocation
by X(q).

The receiver weights the alternatives in the same way as the sender.
When the receiver believes that q = q̂ , then his payoff from allocating y
to alternative a is given by

v(y) = q̂U(y) + (1 − q̂ )U(1 − y),

where U is strictly increasing, a strictly concave function. Note that
the receiver’s reward from each alternative does not directly depend
upon the sender’s investment. Hence, the receiver always wants to
allocate more resources to the alternative that he believes has the higher
weight, regardless of the sender’s allocation of resources. In fact, it is
straightforward to show that the receiver’s optimal response y(q̂ ) is
strictly increasing in q̂ .

The assumption that the receiver’s preferences across alternatives
mirror those of the sender creates a conflict between the two players. The
sender wants a mismatch, in which he invests all of his resources and the
receiver invests none of his resources in the preferred alternative. But
doing so invites a response from the receiver, who also wants to invest
heavily in the preferred alternative, which could eliminate any reward
to the sender. The following assumption implies that the receiver’s
best reply to the sender’s strategy of investing only in the preferred
alternative is to match the sender’s action and invest all of his resources
into the same alternative.

Assumption 2: E[q | q > 1
2 ]U ′(1) + (1 − E[q | q < 1

2 ])U ′(0) > 0.5

Assumption 2 will prove useful in ruling out uninteresting bound-
ary cases.

In general, the receiver does not know q but must infer it from the
signal generated by the sender’s allocation. He updates his beliefs using
Bayes’ rule. The posterior density of q given signal α is given by

f (q | S = α; X) = Ep(X(q )) f (q )∫ 1
0 Ep(X(t)) f (t) dq

. (1)

The posterior density of q given signal β is given by

f (q | S = β; X) = (1 − Ep(X(q ))) f (q )

1 − ∫ 1
0 Ep(X(t)) f (t) dt

. (2)

5. Note that symmetry of f implies that E[q | q < 1
2 ] = 1 − E[q | q > 1

2 ].
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Let q̂s(X) denote the expectation of q conditional on signal s and strategy
X. Then, given signal s and strategy X, the receiver’s expected payoff
from allocating y to alternative a is

υs(y; X) = q̂s(X)U(y) + (1 − q̂s(X))U(1 − y).

A Bayesian Nash equilibrium is a profile {X∗, y∗
α , y∗

β} that satisfies
the usual conditions. The receiver’s response must be optimal given
his beliefs and his beliefs must be Bayes consistent with the signaling
technology and the sender’s equilibrium strategy. Thus, y∗

s maximizes
υs( y; X∗) for s=α,β. The sender’s allocation must be an optimal response
to ( y∗

α , y∗
β), which implies that every strategy x∗ in the support of X∗(q)

maximizes π (x; y∗
α , y∗

β).
In the above model, the sender’s type is exogenous. In an earlier

version of this paper, we endogenized the sender’s type by allowing
him to first choose the weight q, restricting it to be 0 or 1, and then
to choose his allocation of resources. The endogenous type model is
well suited to military examples, as we discuss in a later section. The
analysis is quite similar, primarily because, in equilibrium, the sender
randomizes between the two alternatives, which in turn leads to a
subform or subgame equivalent to the model with exogenous types.
Consequently, the results are also similar.

3. The Equilibrium

We begin our analysis by distinguishing between two kinds of signaling
technologies. Figure 1 illustrates a signaling technology that is not very
responsive to the differential in investment. The thin dashed line is the
diagonal and the bold line is the graph of p(x). For most allocations, both
signals are nearly equally likely. Hence, as long as the sender allocates
some resources to both alternatives, the signal is not very informative
about x. Figure 2 illustrates a signaling technology that is very sensitive
to any differences in the amounts invested. The receiver is almost certain
to get signal α if x exceeds 1

2 and signal β if x is less than 1
2 . Thus, for

most allocations, the receiver can identify the alternative in which the
sender invests relatively more resources.

The above description suggests the following criterion for compar-
ing different signaling technologies. Let p1 and p2 denote two signaling
technologies where the probability of generating signal α under p1
is higher than that of p2 for any x that exceeds 1

2 . By symmetry, the
probability of generating signal β when x is less than 1

2 is also higher
under p1 than under p2. In this case, we will say that p1 is a more revealing
signaling technology than p2.
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FIGURE 1. THE NOISY TECHNOLOGY CASE

Definition 1: p1 is more revealing than p2 if ∀x ∈ [0, 1], |p1(x) − 1
2 | >

|p2(x) − 1
2 |.

In what follows, we will distinguish between two types of signal-
ing technologies: noisy and revealing. We define them relative to the
identity signaling technology, p(x) = x.

Definition 2: Suppose p2(x) = x. Then p1 is a noisy signaling technology
if it is less revealing than p2 and it is a revealing signaling technology if it is
more revealing than p2.

In a noisy technology, p(x) exceeds x for any x less than 1
2 and, in a

revealing technology, p(x) is less than x for any x less than 1
2 . Symmetry

implies that the opposite inequalities hold for any x between 1
2 and 1.

A noisy signaling technology is illustrated in Figure 1 and a revealing
technology is illustrated in Figure 2.
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FIGURE 2. THE REVEALING TECHNOLOGY CASE

By randomizing the allocation of resources, the sender can achieve
signaling probabilities that differ from p. The set of probabilities that can
be generated using mixed strategies is the convex hull of the graph of
p. Define

pL (z) = min
Z

E(p(Z)) s.t. E(Z) = z

and

pH(z) = max
Z

E(p(Z)) s.t. E(Z) = z

as, respectively, the lower and upper bounds of the convex hull of the
graph of p. These bounds are depicted as the thick dashed lines in
Figures 1 and 2. Note that, by Assumptions 1(ii) and (iii), the convex
hull includes the diagonal. The following lemma, which follows from
Assumption 1(ii), establishes that the boundaries are symmetric.
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Lemma 1: pL(z) + pH(1 − z) = 1.

To solve for the equilibrium of the signaling game, we proceed
by backward induction. Given the sender’s strategy, the receiver’s best
reply is easily characterized. Differentiating υs with respect to ys yields
first-order conditions,

U ′(ys)
U ′(1 − ys)

= 1 − q̂s

q̂s
, s = α, β. (3)

Manipulating these first-order conditions yields the following result.

Lemma 2: yα > yβ if and only if q̂α > q̂β .

Consider next the sender’s best reply to an arbitrary receiver
strategy. If yα < yβ , then the sender’s payoff is strictly decreasing in
x for q < 1

2 , and strictly increasing in x for q > 1
2 . Thus, the sender’s best

reply in this case is to allocate all of his resources to the alternative that
has the higher weight in his utility function. But this implies that q̂α >

q̂β , which contradicts the previous lemma. Hence, a necessary condition
for existence of a pure strategy equilibrium is that yα > yβ .

Given any such strategy, and assuming an interior solution, the
sender’s best reply must satisfy

p′(x) = 1
(yα − yβ)

, (2q − 1)p′′(x) > 0.

There are (generically) two possible solutions to the first-order condi-
tion: one lies in the half interval [0, 1

2 ] and the other lies in the half interval
[ 1

2 , 1]. Let x̂(y) denote the solution that exceeds 1
2 . Symmetry implies

that the other solution is 1 − x̂(y). For q greater than 1
2 , the second-order

condition holds at x̂(y) if p is noisy and at 1 − x̂(y) if p is revealing; the
converse is true for q less than 1

2 .

In the case of noisy technologies, the best reply for a sender is to
allocate more than half of his resources to alternative a if q exceeds 1

2
and to alternative b if q is less than 1

2 . Because high types are more likely
to generate signal α, and the prior expectation is 1

2 , the receiver believes
that he is more likely to be playing against high types conditional on
signal α. Similarly, because low types are more likely to generate signal
β, the receiver’s posterior beliefs conditional on signal β is that he is
more likely to be playing low types. Given these beliefs, it follows from
the receiver’s first-order conditions that he allocates more than half of
his resources to alternative a if he obtains signal α and to alternative b if
he obtains signal β, satisfying the necessary condition for existence.
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Proposition 1: There is an equilibrium in pure strategies if and only if
the signaling technology is noisy. The equilibrium is unique and consists of the
sender allocating more resources to his preferred alternative, and the receiver
allocating more resources to alternative a or b depending upon whether he
obtains signal α or β.

To establish necessity, suppose the signaling technology is reveal-
ing. Assumption 2 implies that the best reply of the sender to a strategy
in which yα exceeds yβ is to invest less than half of his resources in
his preferred alternative. The sender does so in hopes that his action
will induce the receiver to invest most of his resources in the other
alternative. But the receiver, knowing the sender’s strategy, understands
that the signal he has received is more likely to have been generated by
the feint, indicating that the preferred alternative is the opposite of the
one implied by the signal. Hence, he is not fooled, and allocates more
of his resources to alterative a conditional on obtaining signal β, and to
alternative b conditional on obtaining signal α. But, given this response,
the sender’s optimality conditions are not satisfied.

The failure of a pure strategy equilibrium to exist in the case of
revealing technologies means that we need to search for an equilibrium
in mixed strategies. We will look for an equilibrium in which the
sender randomizes between investing a small and a large amount in his
preferred alternative. This randomization will cause the receiver to be
uncertain as to whether the sender is a high or low type, and hence about
which of the two alternatives is his preferred one. The main difficulty in
constructing a mixed strategy equilibrium with a continuum of types is
that each sender type has to be indifferent between investing a small or
a large amount of resources in his preferred alternative.

The next lemma establishes that we can restrict our search for
mixed strategies to points on the lower and upper bound of the convex
hull of the graph of p

Lemma 3: If q > 1
2 then (EX∗(q), Ep(X∗(q))) ∈ pL; if q < 1

2 then
(EX∗(q), Ep(X∗(q))) ∈ pH.

A formal proof is given in the Appendix. The idea is simple. For q
greater than 1

2 , consider any allocation strategy X that generates a point
that is not on pL. By definition of pL, there is an alternative strategy
X̂ on pL such that Ep(X̂) = Ep(X) and EX̂ > EX. It then follows from
the linearity of the sender’s profit function that X̂ is a more profitable
strategy than X. Hence there exists at least one pure strategy in the
support of X̂ that yields higher profits than X. The argument for q less
than 1

2 is similar.
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Given the above lemma, the support of X∗ (q) for q larger than 1
2 is

{x1, 1} where x1 solves pL(x) = p(x).6 A necessary condition for x1 to be
a best reply against a strategy (yα , yβ) is that it satisfies

p′(x1)(yα − yβ) = 1.

Note that the second-order conditions for a (local) optimum are satisfied
at x1 because it is less than 1

2 . Furthermore, because p′(x1) = p′
L(z) for z >

x1, the sender’s payoff from 1 is the same as his payoff from x1 (assuming
the latter is a best reply). By symmetry of p, the support of X∗(q) for q
less then 1

2 is {0, 1 − x1} where 1 − x1 solves pH(x) = p(x) for x greater
than 1

2 .

By definition of a mixed strategy, the high types must be indifferent
between choosing x1 and 1. Similarly, low types must be indifferent
between choosing 0 and 1 − x1. These two indifference relationships
yield two equations, which uniquely determine the receiver’s strategy.
Solving the equations for yα and yβ yields

y∗
α = 1

2
+ 1 − x1

2(1 − p(x1))
, y∗

β = 1 − y∗
α. (4)

The final step of the construction is for the sender to randomize
in such a way that the receiver’s beliefs induces him to choose y∗

α

conditional on obtaining signal α and y∗
β conditional on obtaining signal

β. Let θ denote the probability that high types choose x1 and assume that
this is also the probability that low types choose 1 − x1. The first-order
condition for y∗

α determines the value of θ∗. It solves

U ′(y∗
α

)
U ′(1 − y∗

α

) = 1 − q̂α(θ∗)
q̂α(θ∗)

.

where

q̂α(θ∗) = (
1 − θ∗ + θ∗ p(x1)

)
E

[
q | q >

1
2

]
+ (

θ∗(1 − p(x1)
)
E

[
q | q <

1
2

]
.

(5)

Given Assumption 2, the solution for θ is unique and lies between 0
and 1. Furthermore, q̂β = 1 − q̂α , which implies that the sender’s other
first-order condition is also satisfied.

We have established the following proposition.

Proposition 2: Suppose the signaling technology is revealing. There is a
unique equilibrium in which the sender randomizes between investing all of

6. We assume that x1 is unique.
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his resources and investing an amount that is less than half of his resources in
his preferred alternative, and the receiver responds to the signal generated by
investing more than half of his resources in alternative a given signal α and
alternative b given signal β.

We interpret the investment by the sender in the less preferred
alternative as a feint. In the absence of signals, the equilibrium would
consist of the sender investing all of his resources into the preferred
alternative, and the risk-averse receiver dividing his resources equally
between the two alternatives. With signals, the sender cannot pursue
his desired objective without revealing his plans. As a result, he tries
to disguise his true objective by investing some of his resources into
the less preferred alternative. The sole purpose of this investment is to
mislead the receiver into allocating his resources away from the more
preferred alternative.

Propostions 1 and 2 provide a striking characterization of equi-
librium behavior. When signals are not very informative, the sender
always feints, the feint is relatively small, and is successful only some
of the time. The signal is informative because it changes the receiver’s
beliefs and he responds by allocating more resources to the alternative
signaled. When signals are informative, the sender only feints some of
the time, but if he feints, it is always a large feint, using more than half
of his resources. One can show that the expected size of the investment
exceeds 1

2 , so it is rational for the receiver to respond to signal α by
investing more than half of his resources in alternative a and to signal β

by investing more than half of his resources in alternative b. As a result,
whether the sender invests a large or a small amount in his preferred
alternative, it tends to be matched by the receiver.

An interesting special case arises when the receiver is risk neutral.
In this case, the receiver always fully invests in alterative a or b depend-
ing upon whether q̂α is greater than or less than 1

2 . Hence, to support the
particular division needed to make the sender indifferent, the receiver
has to be indifferent over all allocations. He is indifferent if and only if
the randomization on the part of the sender has the effect of making the
signals uninformative (i.e., q̂α = q̂β = 1

2 ). Regardless of which signal is
received, the receiver’s posterior beliefs are the same as his prior beliefs.
Despite this indifference, the receiver has to respond differently to the
signal received.

4. Comparative Statics

The key primitives of our model are the signaling technology and the
preferences of the receiver. In this section we examine how equilibrium
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behavior and payoffs vary with these factors. Proofs of the propositions
can be found in the Appendix.

4.1 The Value of Risk Aversion

Is a risk-averse receiver a weaker opponent than a risk-neutral receiver?
The answer differs depending upon whether the signaling technology
is revealing or noisy. In the revealing case, the sender’s payoff is

π∗(q ) = (2q − 1)
[

1
2

− 1 − x1

2(1 − p(x1))

]
.

Thus, his payoff depends upon p but does not depend on the receiver’s
preferences. The reason is that the receiver’s strategy is determined
by the condition that the sender must be indifferent between full
investment and the partial investment of x1.

The receiver’s strategy does depend upon his preferences when
the technology is noisy. Consider two receivers, 1 and 2, with utility
functions U1 and U2 and assume that receiver 1 is more risk averse than
receiver 2. Applying Theorem 1 of Pratt (1964), for any yα > 1

2 ,

U ′
1(yα)

U ′
1(1 − yα)

<
U ′

2(yα)
U ′

2(1 − yα)
.

Thus, given any pure strategy by the sender, the more risk-averse
receiver always divides his resources more evenly between the two
alternatives, which yields a higher payoff to the sender. In equilibrium,
the sender takes advantage of the receiver’s risk aversion by investing
more in his preferred alternative and earning a higher payoff.

Proposition 3: If the technology is noisy, the sender prefers to play against
a more risk-averse receiver. If the technology is revealing, the sender’s payoff
does not depend upon the receiver’s degree of risk aversion.

4.2 The Value of Stealth

In our model, the sender takes the signaling technology as exogenous.
But, he may have some scope for choosing among signaling technolo-
gies. For example, in modern warfare, the signaling technology depends
upon the method of attack. Adversaries are likely to have a harder time
detecting the target of an air attack than an armed forces attack, and
an air attack that uses conventional bombers is more easily detected
than an air attack that uses stealth bombers. The question that arises is,
in what circumstances, if any, does the sender prefer a more revealing
technology?
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One approach to this question is to study the limit cases. As the
signaling technology gets very noisy, p(x) converges to

p
¯

(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 0
1
2

if 0 < x < 1

1 if x = 1.

In the limit, a negligible feint makes the likelihood of generating signals
α and β equally likely. The signal is essentially uninformative. The
receiver splits his resources equally between the two alternatives and
the sender fully invests in his preferred alternative. Hence, in the limit,
the expected payoff to the sender converges to

π∗(q ) =

⎧⎪⎪⎨
⎪⎪⎩

q − 1
2

if q >
1
2

1
2

− q if q <
1
2
.

By contrast, as the technology becomes more revealing, p(x) con-
verges to

p̄(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if
1
2

> x ≥ 0

1
2

if x = 1
2

1 if 1 ≥ x >
1
2
.

In the limit, the amount that the sender needs to invest to generate the
false signal for certain approaches (but is never equal to) 1

2 . High types
randomize between investing fully and an amount slightly less than 1

2
in alternative a; low types randomize between investing fully and an
amount that is slightly less than 1

2 in alternative b. As a result, if the
receiver observes signal α, he does not know whether he is facing a
high type who is investing fully in alternative a or a low type who is
feinting. Similarly, if he observes signal β, he does not know whether
he is facing a high type who is feinting or a low type who is investing
fully in alternative b. Recall that, to ensure that the sender is willing
to randomize in this way, the receiver’s strategy must satisfy (4). This
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yields the limit values y∗
α = 3/4 and y∗

β = 1/4.7 Substituting these values
into the sender’s profit function gives equilibrium payoffs

π∗(q ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
q − 1

2

)
if q >

1
2

1
2

(
1
2

− q

)
if q <

1
2
.

Thus, the sender is better off with a very noisy technology than a very
revealing technology. The intuition is that the sender has to expend at
least half of his resources generating the false signal when the signaling
technology is very revealing whereas it is free when the signaling
technology is very noisy. Note that the sender’s payoff is continuous
in q and equal to zero for q = 1

2 .
The dividing line between the two classes of signaling technologies

is the identity technology, p(x) = x. In this case, there is a continuum of
equilibrium allocations, all of which yield an expected payoff of zero to
the sender.

A second approach to the question of whether the sender prefers
a noisier technology is to fix the signaling technology and consider an
increase in the noise. The following proposition establishes that stealth
does not pay if the technology is revealing.

Proposition 4: Suppose p1 and p2 are revealing technologies. Then the
sender prefers p1 to p2 if p1 is more revealing than p2.

The intuition is that a more revealing technology makes it is easier
to generate the false signal so the sender can reduce the amount invested
in the feint. The proof is easily seen using Figure 2. Let pLi denote the
lower bound of the convex hull of the graph of pi and let x1i denote
the lower endpoint of the linear segments on pLi, i = 1, 2. The slope of
the chord connecting (x1i, p(x1i)) to (1, 1) is

1 − p(x1i )
1 − x1i

.

Because p1 is more informative than p2, the slope of the chord on p1L is
larger than the slope of the linear segment on p2L. From (4), this implies
that the amount invested in alternative a conditional on signalα, denoted
y∗

αi, is smaller when the technology is p1 than when the technology is p2.

7. The value of θ∗ must satisfy (5). For example, if q is uniformly distributed, this
equation becomes

U′(3/4)
U′(1/2)

= 1 + 2θ

3 − 2θ
.
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Because the equilibrium payoff to the sender for revealing technology
pi is 1 − y∗

αi, the hypothesis is established. A more formal proof is given
in the Appendix.

Although the sender’s payoff for a noisy technology is clearly
larger than his payoff for the identity technology, we have not been able
to show that the value of stealth is always positive without restricting
the preferences of the receiver. If the receiver is risk neutral, then the
receiver’s equilibrium strategy is always to fully invest in the alternative
signaled (i.e., yα = 1 − yβ = 1). As a result, the sender’s equilibrium
payoff is independent of the receiver’s preferences. This allows one to
compare the sender’s profits for different noisy technologies.

Proposition 5: Suppose p1 and p2 are noisy technologies and the receiver
is risk neutral. Then the sender prefers p1 to p2 if p1 is less revealing than p2.

5. Applications

We have presented the model in a generic form because many of
the specific details on payoffs that vary with applications are not
essential to the analysis. Feinting is a useful strategy in games where
the second mover wants to direct its resources at the first mover’s
choice of location in product/geographical space. The first mover has
an incentive to deceive the second mover about its location choice so
that the second mover’s response will be more muted (or delayed) than
it would have been otherwise. In this section, we discuss two classes of
applications.

5.1 Military Games

The most obvious and direct application of the model is to military
conflicts. Here the sender is the attacker, the receiver is the defender,
and the alternatives are locations. The attacker’s payoff is a weighted
average of the outcomes of the battles at each location, as measured by
the differential in the size of the forces. The attacker’s type, q, is his belief
that the battle at location a is likely to be decisive to winning the war.
The attacker would like to commit all of his forces to the more decisive
battle but, in preparing and carrying out his plan of attack, the attacker
cannot avoid generating information about the relative size of the forces
being sent to each location. A larger force requires more support, more
extensive supply lines, and cannot move as quietly or as quickly as a
small force. If the attacker is certain to engage in an all-out attack, it
will be met by an all-out defense. The attacker must pursue a plan of
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attack so that the defender cannot be certain as to which of the two
battles is the decisive one. As a result, he will split his forces between
the two battles, sending relatively more forces to the battle that he thinks
is more likely to be decisive based on the information generated by the
attacker’s division of forces. The attacker, knowing how the defender
will respond, has an incentive to manipulate the defender’s beliefs by
allocating some of his forces to the less important battle, and hopefully
send a signal that will draw most of the defender’s forces away from
the more important battle.

An interesting special case studied in a previous version of this
paper assumes that q is either 0 or 1 (i.e., only one battle matters). In
this model, the attacker allocates forces to each location so as to make
the defender uncertain as to which location is going to be attacked.
The diversionary force threatens but does not actually fight so the cost
of diverting forces away from the battle is an opportunity cost. The
payoffs to the attacker and the defender are measured by the difference
in the size of the forces at the location of the attack. The attacker’s
payoffs are also allowed to vary across locations to reflect differences
in the locations. For example, Calais was an easier target to attack
than Normandy. None of these modeling details had any qualitative
effect on equilibrium behavior. The attacker randomizes over which
location to attack and then, depending upon the signaling technology,
divides his forces using the strategies described in Propositions 1
and 2.

Our results distinguish between two kinds of situations. When the
signaling technology is noisy, the defender finds it difficult to identify
which location is being attacked by the larger force even though the
diversionary force is small. Hence, the attacker can afford to attack
his preferred location with most of his forces. The signal is not very
informative so the defender’s strategy is basically to divide his forces
equally between the two locations and marginally increase the forces
allocated to the location signaled. The Allied invasion of Normandy
serves as an example of this kind of situation. When the defender can
easily detect whether the attack force targeted at a location is small
or large, the attacker sometimes attacks his preferred location with all
of his forces and sometimes he uses the main force as a diversion and
attacks with a small force. The uncertainty created by this strategy makes
the signal less informative. The defender may know which location is
targeted by the larger force, but he cannot be certain as to which battle
is going to be the decisive one. Despite this uncertainty, he responds
by allocating substantially more forces to the location threatened by the
perceived larger force. The response means that the expected payoff to
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the attacker from a sneak attack is similar to his payoff from an all-out
attack.8

5.2 Entry Games

In the standard signaling model of entry, the sender is an incumbent
firm and the receiver is a potential entrant who has to decide whether
or not to enter the market and compete against the incumbent firm. It is
willing to enter against high-cost incumbents but not against low-cost
incumbents. Thus, the high-cost incumbent has an incentive to imitate
the low-cost incumbent’s behavior and try to mislead the entrant into
staying out of the market. However, in many cases, the roles of the
sender and receiver are reversed: it is the entrant who wants to mislead
the incumbent firm. For example, Capital One, an innovative credit
card issuer, wanted to offer new products targeted at specific customer
segments. In order to do so, they collected detailed information on its
customers and then tested thousands of offerings to identify the new
markets. The success of this strategy depended upon the company’s
ability to keep the industry giants such as Citibank from matching its
product offerings. Wary of drawing Citibank’s attention, Capital One
pursued a more costly marketing strategy that relied upon telephone so-
licitation and direct mail rather than high-profile advertising campaigns.
According to a former executive of Capital One, competitors may come
across its mailings but “Citibank would never know what customers
we are targeting, unless we told them. As a result, we have largely
been able to stay under the radar screen.” Palm pursued a somewhat
similar strategy in marketing the Pilot. The company introduced its
product in 1996, carefully positioning it as a complement to the PC,
not a substitute, and playing down its potential in order not to draw
unwelcome attention from competitors like Microsoft. The strategy
apparently worked; Microsoft underestimated the profitability of the
handheld market and delayed its attack on Palm until it was too late.9

The Capital One and Palm stories are examples of innovative
firms undermarketing new products to disguise their entry into an
incumbent’s markets. But they are not examples of feints because, if
the firms had not been innovative, they would have had no reason to
pretend that they were innovative. But, if the decision by the entrant is

8. A classic example in sports of such a strategy is the running play in American
football known as the “naked quarterback bootleg.” While the entire offensive line and
running backs move in one direction, the quarterback fakes a handoff to a running back,
tucks the ball behind his leg, and jogs off in the opposite direction. He has no blockers to
help him gain any yards but, if the feint is successful, none is required.

9. The two cases are studied in detail in Yoffie and Kwak (2001). We thank Lucy White
for drawing our attention to this book.
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not whether to enter the market but which market to enter, then the entry
game becomes a feinting game. Entry involves a substantial investment
in marketing, and the payoffs to the potential entrant are a weighted
average of the difference between its marketing expenditures and those
of the incumbent in each market. The market weight represents the
entrant’s type, and is a measure of its comparative advantage in entering
a particular market. If the entrant ignores the response of the incumbent
firm, then the entrant’s best strategy is to use all of its scarce resources
to enter the market in which it has a comparative advantage. However,
it knows that pursuing such a strategy would generate a quick and
overwhelming response from the incumbent. A better strategy would
be to exploit the incumbent firm’s uncertainty about which market
is the real target by investing in both markets. This will force the
incumbent to split its resources between the two markets, and weaken
its defense of the target market. Hopefully, the incumbent will allocate
relatively more resources to defending the other market. Whether the
entrant has to expend a small or a large amount on diversionary
marketing will depend upon the observability of its expenditures. The
important issue is that, even if the incumbent firm can easily identify
the market in which the entrant is launching a bigger campaign, the
equilibrium does not involve head-to-head competition. The bigger
marketing campaign is sometimes a diversion, and knowledge that this
might be the case forces the incumbent firm to expend resources in both
markets.

A variant of the above model that we studied in a previous
version of this paper involves new product entry over time. Suppose
an innovative firm has perfected a new product and its rival, knowing
that the entrant has been working on a new product, is positioned to
produce a close substitute as soon as the entrant’s new product hits
the market. Instead of engaging in a head-to-head competition with its
rival, the innovator could pursue a more subtle strategy. It could market
an inferior version of its new product first, in the hope that its rival
will expend all of its scarce resources on developing and marketing a
close substitute for the inferior product. Once the rival does so, then the
entrant comes out with the original product, calling it the new, improved
version, and captures the market. Of course, in equilibrium, the imitator
firm anticipates the innovative firm’s strategy, and does not expend all
of its resources reacting to the first product marketed by the entrant. It
keeps some resources in reserve on the chance that the first product was
a decoy and it has to react to the new, improved version. Nevertheless, by
pursuing such a strategy, the innovator forces its rival to delay or reduce
its response to the initial product offering, which increases profits even
when it is not a decoy product. The fake surveys conducted by Tidewater
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to decoy Standard Oil into blocking the wrong pipeline route are an
example of this strategy.

Many companies are accused of product announcements whose
purpose is to mislead. Such products are known as vaporware. In most
cases, the purpose is to mislead consumers. For example, Microsoft
has been accused of announcing products to deter consumers from
switching to superior products (see McAfee (2002), pp. 348–349). These
examples are not well described by the present theory because the
interests of the consumers align with the firms’ interests in the state of
the world where the product exists. However, some instances may
involve misdirection of the research of rival companies. Microsoft has
recently dropped the file system known as WinFS, now almost 10 years
overdue, from the new operating system code-named Longhorn.10

Because there are no significant competing products to the Windows XP
filesystem NTFS, and the delay so long as to suggest intent, it is plausible
to think the WinFS vaporware is aimed at competitors, especially Linux,
rather than consumers. Even without the new file system, Longhorn
itself has been pushed back two years, so that some are suggesting it
be called “longwait.” At trade shows, firms have allegedly showcased
modified versions of their new products lest rivals copycat their designs
before the market opens. Langinier (2000) cites anecdotal evidence
of firms patenting “deadends” in order to send competitors in the
wrong research direction and provides an interesting example from the
pharmaceutical industry in which the patenting firm could have tried
to pursue a feinting strategy.

6. Conclusion

We present a signaling theory of feints based on rational players, which
emphasizes costly actions taken to mislead. When misdirection is costly,
the sender will not attempt to mislead unless there is a payoff to fooling
the receiver; thus feints must be at least partially successful to occur.
Our theory shows that there are two types of feints, and the type that
arises depends on the accuracy or noisiness of the signaling technology.
In a noisy world, the receiver does not respond strongly to the signal
(because the signal is not very informative), so typically large efforts at
misdirection are not worthwhile, and investment in a feint is modest.
In contrast, if the world is not noisy, which we call revealing, signals
are meaningful and the receiver would respond very strongly to the

10. See the forthcoming article by Leander Kahney, “Vaporware Phantom Haunts
Us All,” in Wired Magazine; http://www.wired.com/news/culture/0,1284,66195,00.html,
January 7, 2005.
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signal were feints not possible. Such strong responses by the receiver
invite large attempts to fool the receiver, and equilibrium dictates a
mixed strategy in attempts to fool the receiver with a large diversion
of resources when an attempt occurs. The “sneak attack” is a part of
a natural equilibrium that arises with positive probability when the
receiver can react strongly to the signal. The theory also presents striking
comparative static results. More noise benefits the sender in a noisy
world, but not in a revealing world. In a revealing world, making the
technology less noisy makes the impact of the feint greater and less
costly.

We have tried to keep the model as simple as possible in order
to uncover the essential logic of feints. The model can be extended in
a number of directions. For example, the signal does not have to be
binary. In fact, we have been able to show that, under certain conditions,
the model with a continuum of signals is isomorphic to a model with
binary signals. The essential properties are those of the payoff functions
that imply that the sender’s optimal perceived type is a decreasing
function of its type. As a result, the sender’s best reply to a nondecreasing
strategy by the receiver may not be nondecreasing, and a pure strategy
equilibrium may not exist. The primary assumption that accounts for
the simplicity of the analysis is the assumption that the sender’s payoff
is linear in his action. We are currently exploring the case in which the
sender’s payoff is strictly concave.

Appendix

This appendix contains the proofs that are not in the text.

Proof of Lemma 1. By definition

pL (z) = min
Z

E(p(Z)) s.t. E(Z) = z

= 1 − max
Z

(1 − E(p(Z))) s.t. E(1 − Z) = 1 − z

= 1 − max
Z

E(p(1 − Z)) s.t. E(1 − Z) = 1 − z

= 1 − pH(1 − z).

The third equality follows from symmetry of p. �

Proof of Proposition 1. Substituting the sender’s best reply into (1) and
(2), it follows from the symmetry of p and f that q̂α = 1 − q̂β . If the
technology is noisy, then the receiver’s expectation of q given signal α is
given by
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q̂α =
p(1 − x̂)

∫ 1/2
0 q f (q ) dq + p(x̂)

∫ 1
1/2 q f (q ) dq

p(1 − x̂) 1
2 + p(x̂) 1

2

.

Applying condition (ii) of Assumption 1, we need to show that

(1 − p(x̂))
∫ 1/2

0
q f (q ) dq + p(x̂))

∫ 1

1/2
q f (q ) dq >

1
4
.

Exploiting the symmetry of f about 1
2 , the above inequality is equivalent

to showing that[
p(x̂) − 1

2

] [∫ 1

1/2
q f (q ) dq −

∫ 1/2

0
q f (q ) dq

]
> 0,

which holds since x̂ exceeds 1
2 . On the other hand, if the technology is

revealing, then

q̂α =
p(x̂)

∫ 1/2
0 q f (q ) dq + p(1 − x̂))

∫ 1
1/2 q f (q ) dq

p(1 − x̂) 1
2 + p(x̂) 1

2

.

In this case, an argument similar to the one given above leads to a
contradiction. �
Proof of Lemma 3. Consider any strategy Xa that generates a point that
is not on pL. By definition of pL, there is an alternative stratgey X̂a on pL

such that Ep(X̂a ) = Ep(Xa ) and EX̂a > EXa .

Eπa (X̂a , yα , yβ) = EX̂a − [Ep(X̂a )yα + (1 − Ep(X̂a ))yβ]

> EXa − [Ep(Xa )yα − (1 − Ep(Xa ))yβ]

= Eπa (Xa , yα , yβ).

But this implies that there is at least one pure strategy in the support of
X̂a which yields higher profits than X∗

a , which contradicts the hypothesis
that X∗

a is a best reply to (yα , yβ). The argument for (ii) is similar.

Proof of Proposition 4. When technology pi is revealing, the equilibrium
payoff to the sender is 1 − y∗

αi. Therefore, we need to show that the
equilibrium response by the receiver is smaller against a more revealing
technology. Let pLi denote the lower bound of the convex hull of the
graph of pi and let x1i denote the solution to pLi(x) = pi(x). Then, for any
z ∈ (1/2, 1],

pL2(z) = min
x,θ

{θp2(x) + 1 − θ | θx + 1 − θ = z}

> min
x,θ

{θp1(x) + 1 − θ | θx + 1 − θ = z}

= pL1(z),
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where the inequality follows from Definition 1. This implies that

1 − pL1(z)
1 − z

>
1 − pL2(z)

1 − z
.

The definition of x1i implies,

p′
Li (x1i ) = 1 − pLi (z)

1 − z
.

Hence, p′
L1(x11) > p′

L2(x12). It then follows from equation (4) that y∗
α1 <

y∗
α2. Q.E.D. �

Proof of Proposition 5. Without loss of generality suppose the sender’s
type is q ≥ 1/2 and let x̂1 and x̂2 denote the sender’s best replies to a
strategy in which the receiver allocates all of resources to the alternative
signaled when the signaling technology is p1 and p2 respectively. When
both technologies are noisy, x̂1 and x̂2 exceed 1

2 and are equilibrium
allocations. Therefore, letting π i denote the sender’s profits from tech-
nology i,

π1(x̂1) = (2q − 1)[x̂1 − p1(x̂1)]

≥ (2q − 1)[x̂2 − p1(x̂2)]

> (2q − 1)[x̂2 − p2(x̂2)] = π2(x̂1).

The first inequality follows from the definition of x̂1 as a best response
and the second from the definition of less revealing. Q.E.D. �
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