Baffling Raffling Debaffled [version 2011-12-17 0:0:7]

Preston McAfee

Yahoo! Research
[Editor's Note: The mechanism described in the puzzle is sometimes known as a Chinese Auction. It is also equivalent, as McAfee points out, to a special case of a Cournot problem. An alternative formulation is: I decide a bid x, pay it in full, and then win the good with probability x / X where X is the sum of all the bids. Generalizing the question in the original puzzle, this solves the game for an arbitrary vector of common-knowledge valuations, i.e., the complete-information case with n agents.]

Notation: x_{i} is i 's bid (the number of tickets bought by i) and v_{i} is the value of i, indexed so that $v_{1} \geq v_{2} \geq \ldots$.. Let

$$
X_{-i}=\sum_{j \neq i} x_{j} \text { and } X=\sum_{j} x_{j}
$$

First, note that the payoff to i, given the choices of others, is $\frac{x_{i}}{x_{i}+X_{-i}} v_{i}-x_{i}$. The choice of x_{i} is restricted to $x_{i} \geq 0$, and probably should be restricted to integers. I will ignore this constraint. [This turns out to be moot for the specific (carefully constructed) valuations given in the puzzle.] Note that the individual maximization problem is equivalent to maximizing

$$
\frac{x_{i}}{x_{i}+X_{-i}}-\frac{1}{v_{i}} x_{i} \equiv p(X) x_{i}-c_{i} x_{i},
$$

where $p(X)=\frac{1}{X}$ and $c_{i}=\frac{1}{v_{i}}$. The solution to the problem is just the solution to the standard constant marginal cost Cournot problem, with a unitary elasticity demand curve and asymmetric firms. While this is a common graduate student exercise, the solution isn't necessarily well-behaved.

To characterize the equilibria, return to the profit functions $\frac{x_{i}}{x_{i}+X_{-i}}-c_{i} x_{i}$. This function is concave, so the first order conditions characterize the maximum. The first derivative is $\frac{X_{-i}}{\left(x_{i}+X_{-i}\right)^{2}}-c_{i}=\frac{X-x_{i}}{X^{2}}-c_{i}$. As the values of c_{i} increase in i (being the reciprocals of the v 's), there will be a value n so that the first n have $x_{i}>0$ and all others have $x_{i}=0$. Note that all the agents with positive production have a zero first order condition, or $\frac{X-x_{i}}{X^{2}}-c_{i}=0$. Summing these gives

$$
0=\frac{n X-X}{X^{2}}-\sum_{i=1}^{n} c_{i}
$$

which solves for

$$
\frac{1}{X}=\frac{1}{n-1} \sum_{i=1}^{n} c_{i}
$$

and note immediately from the first order conditions that $n>1$. An equilibrium has been achieved if, given this value of X, the first n firms want to enter and produce positive amounts and no others do, which is equivalent to

$$
\begin{aligned}
& \frac{1}{X}-c_{n} \geq 0 \geq \frac{1}{X}-c_{n+1} \text { or } \\
& c_{n} \leq \frac{1}{X} \leq c_{n+1} \text { or } \\
& c_{n} \leq \frac{1}{n-1} \sum_{i=1}^{n} c_{i} \leq c_{n+1}
\end{aligned}
$$

Once we have an equilibrium number of agents and $\frac{1}{X}=\frac{1}{n-1} \sum_{i=1}^{n} c_{i}$, we can use the first order conditions $0=\frac{X-x_{i}}{X^{2}}$, or $x_{i}=X-c_{i} X^{2}$ to generate the number of tickets purchased.

Using the Mathematica functions below, that yields $\langle 119,77,21,0\rangle$ with profits of $\langle 144.5,42.35,2.25,0\rangle$.

Is the solution unique? Let $p_{n}=\sum_{i=1}^{n} c_{i}$. The coumputation given shows

$$
\begin{aligned}
& c_{n} \leq p_{n} \\
\Longleftrightarrow & c_{n} \leq p_{n-1} \\
\Longrightarrow & c_{n-1} \leq p_{n-1}
\end{aligned}
$$

Thus take the largest equilibrium $n^{* *}$. For all k smaller,

$$
c_{k} \leq p_{k}
$$

But consider any hypothetical smaller equilibrium n^{*}. As shown it satisfies

$$
p_{n^{*}+1} \leq c_{n^{*}+1}
$$

This would be a contradiction except for ties. If the c 's were strictly increasing we would have the first inequality strictly and be done. If some c 's are equal, the additional firms/agents produce/bid zero (since we are satisfying the price inequality with equality) and can be safely ignored.

The final question: how did the profits compare? The profit vector (seller, buyers) was $\langle 336.35,144.15,0,0,0,0\rangle$, and under the raffle it is $\langle 217,144.5,42.35,2.25,0,0\rangle$. So Nora gained the most.

Implementation of the solution in Mathematica

Following is Mathematica code to compute the equilibrium bids and profits. The helper function bz gives the hypothetical equilibrium bids (as a function of the vector of values) if we knew all agents would, in equilibrium, participate. Another helper function, bs, gives the equilibrium bids, without assuming full participation, if the values are in ascending order, which is of course wLOG. The bs function works by recursively re-solving for equilibrium bids with the subset of agents for which bz yields positive bids. Finally, bids gives the equilibrium bids for arbitrary values (by just sorting, calling bs, and then unsorting). Additionally, prof gives the expected profit to each agent in equilibrium.

```
bz[v_]:= With[{n = Length[v], r = Total[1/v]}, (n-1)(r-(n-1)/v)/r^2]
bs[v_]:= With[{x = bz[v]}, If[x[[1]]<0, Prepend[bs[Rest[v]], 0], x]]
bids[v_]:= bs[Sort@v][[Ordering@Ordering@v]]
prof[v_]:= With[{b = bids[v]}, v*b/Total[b] - b]
```

