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In the classical secretary problem, one attempts to find the maximum of an unknown and unlearnable

distribution through sequential search. In many real-world searches, however, distributions are not entirely

unknown and can be learned through experience. To investigate learning in such settings, we conduct a

large-scale behavioral experiment in which people search repeatedly from fixed distributions in a “repeated

secretary problem.” In contrast to prior investigations that find no evidence for learning in the classical

scenario, in the repeated setting we observe substantial learning resulting in near-optimal stopping behavior.

We conduct a Bayesian comparison of multiple behavioral models which shows that participants’ behavior is

best described by a class of threshold-based models that contains the theoretically optimal strategy. Fitting

such a threshold-based model to data reveals players’ estimated thresholds to be surprisingly close to the

optimal thresholds after only a small number of games.
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1. Introduction

When searching over sequences of candidates, how do people learn to stop searching, balancing the

risks of choosing before or after the ideal candidate has been seen? In this article, we investigate

this question with an empirical analysis of the secretary problem, a formal game in which an agent

evaluates candidates one at a time in search of the best one, making an accept or reject decision

after each evaluation. Only one candidate can be accepted, and once rejected, a candidate can

never be recalled. It is called the secretary problem because it resembles a hiring process in which

candidates are interviewed serially and, if rejected by one employer, are quickly hired by another.

Since its appearance in the mid-twentieth century, the secretary problem has enjoyed exceptional

popularity (Freeman 1983). It is the prototypical optimal stopping problem, attracting so much

interest from so many fields that one review article concluded that it “constitutes its own ‘field’ of

study” (Ferguson 1989). In this century, analyses, extensions, and tests of the secretary problem

have appeared in decision science, operations research, computer science, economics, statistics,

psychology as well as in the pages of this journal (Alpern and Baston 2017, Palley and Kremer

2014, Bearden et al. 2006).

The intense academic interest in the secretary problem may have to do with its similarity to

real-life search problems such as choosing a mate (Todd 1997), choosing an apartment (Zwick et al.

2003) or hiring, for example, a secretary. It may have to do with the way the problem exemplifies

the concerns of core branches of economics and operations research that deal with search costs.
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Lastly, the secretary problem may have endured because of curiosity about its fascinating solution.

In the classic version of the problem, the optimal strategy is to ascertain the maximum of the

first 1/e candidates and then stop after the next candidate that exceeds it. Interestingly, this 1/e

stopping rule wins about 1/e of the time in the limit (Gilbert and Mosteller 1966). This curious

solution to the secretary problem only holds when the decision maker has no information about the

distribution from which the values in the candidates are drawn (e.g., Mahdian et al. 2008); i.e., when

only the rankings of values are revealed, rather than the values themselves. The optimal solution

when the decision maker has full information about the distribution is qualitatively different. But is

it realistic to assume that people cannot learn about the distributions in which they are searching?

In many real-world searches, people can learn about the distribution of the quality of candidates

as they search. The first time a manager hires someone, she may have only a vague guess as to

the quality of the candidates that will come through the door. By the fiftieth hire, however, she’ll

have hundreds of interviews behind her and know the distribution rather well. This should cause

her accuracy in a real-life secretary problem to increase with experience.

While people seemingly should be able improve at the secretary problem with experience, sur-

prisingly, prior academic research does not find evidence that they do. For example, Campbell

and Lee (2006) attempted to get participants to learn in the full information condition by offering

enriched feedback and even financial rewards in a repeated secretary problem, but concluded “there

is no evidence people learn to perform better in any condition”. Similarly, Lee (2006), Guan and

Lee (2017) found no evidence of learning in the full information version of the problem, nor did

Seale and Rapoport (1997) in the no information (ranks-only) version.

In contrast, by way of a randomized experiment with thousands of players, we find that perfor-

mance improves dramatically over a few trials and soon approaches optimal levels. We will show

that players steadily increase their probability of winning the game with more experience, eventu-

ally coming close to the optimal win rate. Then we show that the improved win rates are due to

players learning to make better decisions on a candidate-by-candidate basis and not just due to

aggregating over candidates. Furthermore we will show that the learning we observe occurs in a

noisy environment where the feedback they get, i.e. win or lose, may be unhelpful. After showing

various types of learning in our data we turn our attention to modeling the players behavior. Using

a Bayesian comparison framework we show that players’ behavior is best described by a family

of threshold-based models which include the optimal strategy. Moreover, the estimated thresholds

are surprisingly close to the optimal thresholds after only a small number of games.

2. Related Work

While the total number of articles on the secretary problem is large (Freeman 1983), our concern

with empirical, as opposed to purely theoretical, investigations reduces these to a much smaller set.
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We discuss here the most similar to our investigation. Ferguson (1989) usefully defines a “standard”

version of the secretary problem as follows:

1. There is one secretarial position available.

2. The number n of applicants is known.

3. The applicants are interviewed sequentially in random order, each order being equally

likely.

4. It is assumed that you can rank all the applicants from best to worst without ties. The

decision to accept or reject an applicant must be based only on the relative ranks of those

applicants interviewed so far.

5. An applicant once rejected cannot later be recalled.

6. You are very particular and will be satisfied with nothing but the very best.

The one point on which we deviated from the standard problem is the fourth. To follow this

fourth assumption strictly, instead of presenting people with raw quality values, some authors (e.g.,

Seale and Rapoport 1997) present only the ranks of the candidates, updating the ranks each time

a new candidate is inspected. This prevents people from learning about the distribution. However,

because the purpose of this work is to test for improvement when distributions are learnable, we

presented participants with actual values instead of ranks.

Other properties of the classical secretary problem could have been changed. For example, there

exist alternate versions in which there is a payout for choosing candidates other than the best.

These “cardinal” and “rank-dependent” payoff variants (Bearden 2006) violate the sixth property

above. We performed a literature search and found fewer than 100 papers on these variants, while

finding over 2,000 papers on the standard variant. Our design preserves the sixth property for two

reasons. First, by preserving it, our results will be directly comparable to the the greatest number

of existing theoretical and empirical analyses. Second, changing more than one variable at a time is

undesirable because it makes it difficult to identify which variable change is responsible for changes

in outcomes.

While prior investigations, listed next, have looked at people’s performance on the secretary

problem, none have exactly isolated the condition of making the distributions learnable. Across

several articles, Lee and colleagues (Lee 2006, Campbell and Lee 2006, Lee et al. 2004) conducted

experiments in which participants were shown values one at a time and were told to try to stop at

the maximum. Across these papers, the number of candidates ranged from 5 to 50 and participants

played from 40 to 120 times each. In all these studies, participants knew that the values were drawn

from a uniform distribution between 0 and 100. For instance, Lee (2006) states, “It was emphasized

that ... the values were uniformly and randomly distributed between 0.00 and 100.00”. With such
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an instruction, players can immediately and exactly infer the percentiles of the values presented

to them, which helps them calculate the probability that unexplored values may exceed what

they have seen. As participants were told about the distribution, these experiments do not involve

learning distribution from experience, which is our concern. Information about the distribution was

also conveyed to participants in a study by Rapoport and Tversky (1970), in which seven individual

participants viewed an impressive 15,600 draws from probability distributions over several weeks

before playing secretary problem games with values drawn from the same distributions. In a study

where participants played secretary problem games on five values drawn from either a left skewed

or right skewed distribution, Guan and Lee (2017) provided information about the distribution by

requiring participants to first play eight “practice problems” before beginning the main part of

the experiment. These investigations are similar to ours in that they both involve repeated play

and that they present players with actual values instead of ranks. That is, they depart from the

fourth feature of the standard secretary problem listed above. These studies, however, differ from

ours in that they give participants information about the distribution from which the values are

drawn before they begin to play. In contrast, in our version of the game, participants are told no

information about the distribution, see no samples from it before playing, and do not know what

the minimum or maximum values could be. This key difference between the settings may have had

a great impact. For instance, in the studies by Lee and colleagues, the authors did not find evidence

of learning or players becoming better with experience. In contrast, we find profound learning and

improvement with repeated play.

Corbin et al. (1975) ran an experiment in which people played repeated secretary problems, with

a key difference that these authors manipulated the values presented to subjects with each trial.

For instance, the authors varied the support of the distribution from which values were drawn,

and manipulated the ratio and ranking of early values relative to later ones. The manipulations

were done in an attempt to prevent participants from learning about the distribution and thus

make each trial like the “standard” secretary problem with an unknown distribution. Similarly,

Palley and Kremer (2014) provide participants with ranks for all but the selected option to hinder

learning about the distribution. In contrast, because our objective is to investigate learning, we

draw random numbers without any manipulation.

Finally, in a study by Kahan et al. (1967), groups of 22 participants were shown up to 200

numbers chosen from either a left skewed, right skewed or uniform distribution. In this study, as

well as ours, participants were presented with actual values instead of ranks. Also like our study,

distributions of varying skew were used as stimuli. However, in Kahan et al. (1967), participants

played the game just one time and thus were not able to learn about the distribution to improve

at the game.
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Other empirical studies have investigated the process by which people update their choices

of strategy based on feedback in settings other than the secretary problem. Rieskamp and Otto

(2006) propose a reinforcement learning based framework in which participants choose from a

strategy repetoire based on the strategies’ historical payoffs. Worthy and Maddox (2014) compare

a reinforcement learning based framework to a “win-stay, lose-shift” model, as well as a hybrid

model. In this study we focus on modeling the within-game strategies chosen by participants rather

than the process by which those strategies evolve in response to feedback; however, modeling the

feedback-response process in an important direction for future work.

In summation, for various reasons, prior empirical investigations of the secretary problem have

not been designed to study learning about the distribution of values. These studies either informed

participants about the parameters of the distribution before the experiment, allowed participants

to sample from the distribution before the experiment, replaced values from the distribution with

ranks, manipulated values to prevent learning, or ran single-shot games in which the effects of

learning could not be applied to future games. Our investigation concerns a repeated secretary

problem in which players can observe values drawn from distributions that are held constant for

each player from game to game. We focus on understanding players’ behavior within games, leaving

the question of modeling the evolution in individuals’ strategies for future work.

3. Experimental setup

To collect behavioral data on the repeated secretary problem with learnable distributions of values,

we created an online experiment. The experiment was promoted on the Psychology Today blog,

a newsletter of a behavioral economics consultancy, and the website of one of the authors. This

type of data collection has the advantages of being inexpensive, leading to very large samples, and

recruiting a more diverse population than the standard population of university undergraduates

in an experimental economics lab (Rubinstein 2013). The experiment did not involve monetary

incentives. Like Rubinstein, who wrote about similar experiments that “the behavioral results are,

in my judgment, not qualitatively different from those obtained by more conventional methods,”

we feel the pros (collecting more data on a fixed budget and eliminating the transaction costs of

having each participant register and provide payment credentials) outweigh the cons (the lack of

a financial incentive to try). If incentives improve performance on this task, the results from this

unincentivized setting might be taken as a lower bound for how well a similar population should

be able to learn to play the repeated secretary problem.

The experiment attracted 6,537 players who played the game at least one time. A total of 48,336

games were played on the site. As users arrived at the game’s landing page, they were cookied

and their browser URL was automatically modified to include an identifier. These two steps were
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taken to assign all plays on the same browser to the same user id and condition, and to track

person-to-person sharing of the game URL. Any user determined to arrive at the site via a shared

URL (i.e., a non-cookied user entering via a modified URL) was excluded from analysis and is not

counted in the 6,537 we analyze. We note that including these users makes little difference to our

results and that we only exclude them to obtain a set of players that were randomly assigned to

conditions by the website. Users saw the following instructions. Blanks stand in the place of the

number of boxes, which was randomly assigned and will be described later.

You have been captured by an evil dictator. He forces you to play a game. There are boxes.

Each box has a different amount of money in it. You can open any number of boxes in any

order. After opening each box, you can decide to open another box or you can stop by clicking

the stop sign. If you hit stop right after opening the box with the most money in it (of the

boxes), then you win. However, if you hit stop at any other time, you lose and the evil dictator

will kill you. Try playing a few times and see if you improve with practice.

The secretary problem was lightly disguised as the “evil dictator game” to somewhat lessen the

chances that a respondent would search for the problem online and discover the classical solution.

The boxes correspond to the candidates, and the amount of money in each box represents the

candidate’s value.

Immediately beneath the instructions was an icon of a traffic stop sign and the message “When

you are done opening boxes, click here to find out if you win”. Beneath this on the page were

hyperlinks stating “Click here to open the first box”,“Click here to open the second box”, and so

on. As each link was clicked, the corresponding box value was presented to the user. If the value

in the box was the highest seen thus far, it was marked as such on the screen. See Figure 10 in the

Appendix for a screenshot. Every click and box value was recorded, providing a record of every

box value seen by every player, as well as every stopping point. If a participant tried to stop at a

box that was dominated by (i.e., less than) an already opened box, a pop-up explained that doing

so would necessarily result in the player losing. After clicking on the stop icon or reaching the

last box in the sequence, participants were redirected to a page that told them whether they won

or lost, and showed them the contents of all the boxes, where they stopped, where the maximum

value was, and by how many dollars (if any) they were short of the maximum value. To increase

the number of observations submitted per person, players were told “Please play at least six times

so we can calculate your stats”.

3.1. Experimental Conditions

To allow for robust conclusions that are not tied to the particularities of one variant of the game,

we randomly varied two parameters of the game: the distributions and the number of boxes. Each

player was tied to these randomly assigned conditions so that their immediate repeat plays, if any,

would be in the same conditions.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. MS-17-01723.R1 7

0.00

0.25

0.50

0.75

1.00

0 25,000,000 50,000,000 75,000,000 100,000,000
Box Value

P
ro

po
rt

io
n 

<
=

 X

Distribution Low Medium High

Figure 1 Cumulative distribution functions (CDFs) of the three distributions from which box values were

randomly drawn in the experiment. As probability density functions, the “low” distribution is strongly positively

skewed, the “medium” distribution is a uniform distribution, and the “high” distribution is strongly negatively

skewed.

3.1.1. Random assignment to distributions The box values were randomly drawn from

one of three probability distributions, as pictured in Figure 1. The maximum box value was 100

million, though this was not known by the participants. The “low” condition was strongly negatively

skewed. Random draws from it tend to be less than 10 million, and the maximum value tends

to be notably different than the next highest value. For instance, among 15 boxes drawn from

this distribution, the highest box value is, on average, about 14.5 million dollars higher than the

second highest value. In the “medium” condition numbers were randomly drawn from a uniform

distribution ranging from 0 to 100 million. The maximum box values in 15 box games are on average

6.2 million dollars higher than the next highest values. Finally, in the “high” condition, boxes

values were strongly negatively skewed, and bunched up near 100 million. In this condition, most

of the box values tend to look quite similar (typically eight-digit numbers greater than 98 million).

Among 15 boxes, the average difference between the maximum value and the next highest is rather

small at only about 80,000 dollars. Note that players need only attend to the percentiles of the

distribution in order to make optimal stopping decisions; the details of the distribution beyond the

percentiles are irrelevant to optimal play. However, different distributions could potentially lead to

differences in actual, human play. Hence, varying the distribution presented to participants leads

to more generalizable results than an analysis of a single, arbitrary setting.
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3.1.2. Random assignment to number of boxes The second level of random assignment

concerned the number of boxes, which was either 7 or 15. While one would think this approximate

doubling in the number of boxes would make the game quite a bit harder, it only affects theoretically

optimal win rates by about 2 percentage points, as will be shown. As with the distributions, varying

the number of boxes leads to more generalizable results.

With either 7 or 15 boxes and three possible distributions, the experiment had a 2×3 design. In

the 7 box condition, 1145, 1082, and 1103 participants were randomly assigned to the low, medium,

and high distributions, respectively, and in the 15 box condition, the counts were 1065, 1127, and

1015, respectively. The number of subjects assigned to the different conditions was not significantly

different whether comparing the two box conditions (7 or 15), the three distributions of box values

(low, medium, or high), or all six cells of the experiment by chi-squared tests (all ps > 0.05).

3.2. Optimal play

Before we begin to analyze the behavioral data gathered from these experiments we first discuss

how one would play this game optimally. Recall that the player sequentially opens boxes whose

values are drawn independently from a common distribution F . The player wins only if they select

the highest value out of all of the boxes, opened or unopened. The problem is nontrivial because

they are forced to make a stopping decision for each box without knowing the contents of the as-yet

unopened boxes.

Optimal players will adopt a threshold rule: accept the current value if it is greater than a critical

value (Gilbert and Mosteller 1966). It is a dominant strategy to reject any value worse than the best

value previously observed.1 With a known distribution independently distributed across periods,

the critical dollar value will be the maximum of the historically best value and a critical dollar

value that does not depend on the history. Gilbert and Mosteller (1966) derived the critical dollar

values for the uniform distribution over [0,1]. Since the percentiles of an arbitrary distribution are

uniformly distributed on [0,1] by definition, this same analysis gives the critical percentile values

for all distributions, listed in Table 1.2

The relevant entries for our study are the games of 7 and 15 periods. These calculations show

that experienced players who know the distribution can hope to win at best 62.2% of the games

for 7 period games and just under 60% of the time for 15 period games. Note that these numbers

compare favorably with the usual secretary result, which are lesser for all game lengths, converging

to the famous 1/e as the length diverges. Thus there is substantial value in knowing the distribution.

1 The final box, which must be accepted if opened, is an exception. In our game, a pop-up warning prevented players
from choosing dominated boxes.

2 Despite the term “percentile”, we use decimal notation instead of percentages for convenience.
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Table 1 Critical values and probability of winning given a known distribution of values for up to 15 boxes.

Boxes left Critical percentiles Pr(Win)

1 0 1
2 0.5 0.750
3 0.6899 0.684
4 0.7758 0.655
5 0.8246 0.639
6 0.8559 0.629
7 0.8778 0.622
8 0.8939 0.616
9 0.9063 0.612
10 0.9160 0.609
11 0.9240 0.606
12 0.9305 0.604
13 0.9361 0.602
14 0.9408 0.600
15 0.9448 0.599

Table 2 The probability of winning a game in the classical secretary problem (unknown distribution of values)

for up to fifteen boxes

Game Length Classical Secretary
(Periods) Problem Pr(Win)

1 1
2 0.50
3 0.50
4 0.458
5 0.433
6 0.428
7 0.414
8 0.410
9 0.406
10 0.399
11 0.398
12 0.396
13 0.392
14 0.392
15 0.389

This favorable comparison holds for the specific game lengths that we consider as well as in the

limit. As is reasonably well known, the value of the classical secretary solution can be found by

choosing a value k to sample, and then setting the best value observed in the first k periods as a

critical value. Optimizing over k yields the probabilities of winning for given game lengths given

in Table 2. Comparing the probability of winning shown in Tables 1 and 2 shows that making the

distribution learnable allows for a much higher rate of winning.
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How well can players do learning the distribution? To model this, we consider an idealized agent

that plays the secretary problem repeatedly and learns from experience. The agent begins with

the critical percentile values and learns the percentiles of the distribution from experience; it will

be referred to as the “LP” (learn percentiles) agent. The agent has a perfect memory, makes no

mistakes, has derived the critical values in Table 1 correctly, and can re-estimate the percentiles of

a distribution with each new value it observes. It is difficult to imagine a human player being able

to learn at a faster rate than the LP agent. We thus include it as an unusually strong benchmark.

3.3. Learning Percentiles: The LP agent

The LP agent starts off knowing the critical values for a 7 or 15 box game in percentile terms (i.e.,

the critical values given by the first 7 or 15 rows of Table 1). The agent does not yet know the

critical value as raw box values, because the distribution is unknown before the first play. Armed

with these critical values, the LP agent converts the box values it observes into percentiles in order

to compare them to the critical values. The first box value the LP agent sees gets assigned an

estimated percentile of .50. If the second observed box value is greater than the first, it estimates

the second value’s percentile to be .75 and re-estimates the first value’s percentile to be .25. If the

second value is smaller than the first, it assigns the estimate of .25 to the second value and .75 to

the first value. It continues in this way, re-estimating percentiles for every subsequent box value

encountered according to the percentile rank formula:

N< + 0.5N=

N
(1)

where N< is the number of values seen so far that are less than the given value, N= is the number

of times the given value has occurred so far, and N is the number of boxes opened so far.

After recomputing all of the percentiles, the agent compares the percentile of the box just opened

to the relevant critical value and decides to stop if the percentile exceeds the critical value, or

decides to continue searching if it falls beneath it, making sure never to stop on a dominated box

unless it is in the last position and therefore has no choice. Recall that a dominated box is one

that is less than the historical maximum in the current game. The encountered values are retained

from game to game, meaning that the agent’s estimates of the percentiles of the distribution will

approach perfection and win rates will approach the optima in Table 1.

How well does the LP agent perform? Figure 2 shows its performance. Comparing its win rate

on the first play to the 7 and 15 box entries in Table 2, we see that the LP agent matches the

performance of the optimal player of the classic secretary problem in its first game. Performance

increases steeply over the first three games and achieves the theoretical maxima (black lines) in

seven or fewer games. In any given game a player can either stop when it sees the maximum value,
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Figure 2 Rates of winning (red lines), stopping too soon (blue lines) and stopping too late (green lines) for the

LP agent. The theoretically maximal win rates for 7 and 15 boxes are given by the solid black lines.

in which case it wins, or the player could stop before or after the maximum value, in which case it

loses. In addition to the win rates, Figure 2 also shows how often agents commit these two types

of errors. Combined error is necessarily the complement of the win rate so the steep gain in one

implies a steep drop the other. Both agents are more likely to stop before the maximum as opposed

to after it, which we will see is also the case with human players.

The LP agent serves as strong benchmark against which human performance can be compared.

It is useful to study its performance in simulation because the existing literature provides optimal

win rates for many variations of the secretary problem, but is silent on how well an idealized3 agent

3 Although it is idealized, the LP agent is nevertheless not an optimal Bayesian learner. It seems very reasonable to
want an equal posterior probability of the next value occurring in each interval between the data observed so far; the
estimate of Equation 1 has this property. However, there is no countably additive prior that will produce a sequence
of estimates having this property when conditioned on successive observations (Hill 1968). We are not aware of any
tractable, analytic, optimal Bayesian procedures for sequential quantile estimation.
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would do when learning from scratch. In addition to win rates, these agents show the patterns of

error that even idealized players would make on the path to optimality. In the next section, we

will see how these idealized win and error rates compare to those of the human players in the

experiment.

4. Behavioral Results: Learning Effects

As 48,336 games were played by 6,537 users, the average user played 7.39 games. Roughly half

(49.6%) of users played 5 games or more, a quarter (23.2%) played 9 games or more, and a tenth

(9.3%) played 16 games or more.

Prior research (e.g., Lee 2006) has found no evidence of learning in repeated secretary problems

with known distributions. What happens with unknown but learnable distribution? As shown in

Figure 3, players rapidly improve in their first games and come within five to ten percentage points

of theoretically maximal levels of performance. The leftmost point on each red curve indicates the

how often first games are won. The next point to the right represents second games, and so on. The

solid black lines at .622 and .599 show the maximal win rate attainable by an agent with perfect

knowledge of the distribution. Note that these lines are not a fair comparison for early plays of the

game in which knowledge of the distribution is imperfect or completely absent; in pursuit of a fair

benchmark, we computed the win rates of the idealized LP agent shown in the dashed gray lines.

Performance in the first games, in which players have very little knowledge of the distribution is

quite a bit lower than would be expected by optimal play in the classic secretary problem with 7

(optimal win rate .41) or 15 boxes (optimal win rate .39). Thus, some of the learning has to do with

starting from a low base. However, the classic version’s optima are reached by about the second

game and improvement continues another 10 to 15 percentage points beyond the classic optima.

One could argue that the apparent learning we observe is not learning at all but a selection effect.

By this logic, a common cause (e.g., higher intelligence) is responsible both for players persisting

longer at the game and winning more often. To check this, we created Figure 12, in the Appendix,

which is a similar plot except it restricts to players who played at least 7 games. Because we see

very similar results with and without this restriction, we conclude that Figure 3 reflects learning

and not selection effects.

Recall that our experiment had a 2×3 design with either 7 or 15 boxes and one of three possible

underlying distributions of the box values. Figure 3 shows the average probability of our subjects

winning in the 7 and 15 box treatments aggregated over the three different distributions of box

values. Figure 4 shows the probability of people winning in each of the six treatments of our exper-

iment. First, observe that the probability of winning, indicated by the red lines, increases towards

the maximal win rate in each of the six treatments. In all six treatments, most of the learning hap-

pens in the early games with diminishing returns to playing more games. This qualitative similarity
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Figure 3 Solid red, blue and green lines indicate the rates of winning the game and committing errors for

human players with varying levels of experience. Error bars indicate ±1 standard error; when they are not visible

they are smaller than the points. The area of each point is proportional to the number of players in the average.

The graph is cut at 20 games as less than 1% of games played were beyond a user’s 20th. The dashed gray line is

the rate of winning the game for the LP agent. The solid black horizontal lines indicate the maximal win rate for

an agent with perfect knowledge of the distribution.

demonstrates the robustness of the finding that there is rapid and substantial learning in just a

few repeated plays of the secretary problem. By comparing the probability of winning across all

six treatments one can see that the low and medium distributions were about equally as difficult

and that the high distribution was the hardest as it had the lowest probability of winning. To

understand this, we next examine the types of errors the participants made. The probability of

stopping after the maximum box value, indicated by the green lines, is fairly similar across all six

treatments. There is, however, variation in the probability of stopping before the max, indicated by

the blue lines, across the six treatments. Participants were more likely to stop before the maximum

box in the high condition than the others, which explains why subjects performed worse in this
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Figure 4 Solid red, blue, and green lines indicate the rates of winning the game and committing errors for

human players with varying levels of experience. Error bars indicate ±1 standard error; when they are not visible

they are smaller than the points. The solid black horizontal lines indicate the maximal win rate for an agent with

perfect knowledge of the distribution.

treatement than the others. Since the overall qualitative trends are fairly similar across the three

different distributions of box values we will aggregate over them in the analyses that follow.

Having established that players’ behavior changes with experience, we turn our attention to

characterizing those changes. One overarching trend is that soon after their first game, people

search less. As seen in Figure 5, in the first eight games, the average depth of search decreases by

about a quarter to a third of one box. Players can lose by stopping too early or too late. These

search depth results suggest that stopping too late is the primary concern that participants address

early in their sequence of games. This is also reflected in the rate of decrease in the “stopping after

max” errors in Figure 3 and 4. In both panels, rates of stopping after the maximum decrease most

rapidly.
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Figure 5 Search depth for players in their first games measured by the number of boxes opened. Error bars

indicate ±1 standard error.
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(b) LP Agent

Figure 6 Left panel: Empirical rates of stopping search for box values above and below the critical values.

Right panel: Version of 6(a) with data from simulated agents instead of human players. Only non-dominated

boxes are included in this analysis.

4.1. Optimality of box-by-box decisions

Do players’ decisions become more optimal with experience? Recall that when the distribution is

known one can make an optimal decision about when to stop search by comparing the percentile

of an observed box value to the relevant critical value in Table 1. If the observed value exceeds

the critical value, it is optimal to stop, otherwise it is optimal to continue search. In Figure 6, the
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horizontal axis shows the difference between observed box values (as percentiles) and the critical

values given in Table 1. The vertical axis shows the probability of stopping search when values

above or below the critical values are encountered. The data in the left panel are from human

players and reflect all box-by-box decisions.

An optimal player who knows the exact percentile of any box value, as well as the critical values,

would always keep searching (stop with probability 0) when encountering a value whose percentile

is below the critical value. Similarly, such an optimal player would always stop searching (stop

with probability 1) when encountering a value whose percentile exceeds the critical value. Together

these two behaviors would lead to a step function: stopping with probability 0 to the left of the

critical value and stopping with probability 1 above it.

Figure 6(a) shows that on first games (in red), players tend to both under-search (stopping about

25% of the time when below the critical value) and to over-search (stopping at a maximum of

75% of the time instead of 100% of the time when above the critical value). In a player’s second

through fourth games (in green) performance is much improved, and the probability of stopping

search is close to the ideal .5 at the critical value. The blue curve, showing performance in later

games, approaches ideal step function. To address possible selection effects in this analysis, Figure

13 in the Appendix is similar to Figure 6 except it restricts to the games of those who played a

substantial number of games. Because there are fewer observations, the error bars are larger but

the overall trends are the same suggesting again that these results are due to learning as opposed

to selection bias.

Attaining ideal step-function performance is not realistic when learning about the distribution

from experience. Comparison to the LP agent provides a baseline of how well one could ever hope

to do. Figure 6(b) shows that in early games, even the LP agent both stops and continues when it

should not. Failing to obey the optimal critical values is a necessary consequence of learning about

a distribution from experience. Compared to the human players, however, the LP agent approaches

optimality more rapidly. Furthermore, on the first game, it is less likely to make large-magnitude

errors. While the human players never reach the ideal stopping rates of 0 and 1 on the first game,

the LP agent does so when the observed values are sufficiently far from the critical vales.

Figure 6(a) shows that stopping decisions stay surprisingly close to optimal thresholds in aggre-

gate. Recall that the optimal thresholds depend on how many boxes are left to be opened (see

Table 1). Because early boxes are encountered more often than late ones, this analysis could be

dominated by decisions on the early boxes. To address this, in what follows we estimate the thresh-

old of each box individually.
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4.2. Effects of unhelpful feedback

One may view winning or losing the game as a type of feedback for the player to indicate if the

strategy used needs adjusting. Taking this view, consider a player’s first game. Say this player

over-searched in the first game, that is, they saw a value greater than the critical value but did not

stop on it. Assume further that this player won this game. This player did not play the optimal

strategy but won anyway, so their feedback was unhelpful. The middle panel of Figure 7(a) shows

the errors made during a second game after over-searching and either winning or losing during

their first game. The red curve tends to be above the blue curve, meaning that players who stopped

too late but didn’t get punished (blue) are less likely to stop on most box values in the next game,

compared to players who stopped too late and got punished (red).

Similarly, the bottom panel shows the blue curve to be above the red curve, meaning that players

who stopped too early but didn’t get punished (blue) are more likely to stop on most box values

in the next game, compared to players who stopped too early and got punished (red).

This finding makes the results in Figures 3 and 6 even more striking as it is a reminder that the

participants are learning in an environment where the feedback they receive is noisy. Figure 7(b)

shows the errors in the fifth game given the feedback from the first game.4

Even a quick glance shows that the curves are essentially on top of each other. Thus, those who

received unhelpful feedback in the first game were able to recover—and perform just as well as

those who received helpful feedback—by the fifth game.

5. Modeling Player Decisions

In this section we explore the predictive performance of several models of human behavior in the

repeated secretary problem with learnable distributions. We begin by describing our framework for

evaluating predictive models, then describe the models, and finally compare their performance.

5.1. Evaluation and comparison

Our goal in this section is to compare several models in terms of how well they capture human

behavior in the repeated secretary game to give us some insight as to how people are learning to

play the game. Since our goal is to compare how likely each model is given the data the humans

generated we use a Bayesian model comparison framework. The models we compare, defined in

Section 5.2, are probabilistic, allowing them to express differing degrees of confidence in any given

prediction. This also allows them to capture heterogeneity between players. In contexts where

players’ actions are relatively homogeneous, their actions can be predicted with a high degree of

4 The fifth game was the first game where the differences between the distribution of behavior of players who initially
won and those who initially lost was not significant at any standard level for any of the three possible error types in
the first game (no error, under-search, over-search). See Table 3 in the Appendix for p-values.
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Figure 7 Errors in the second (left) and fifth (right) games given whether the first game was won (red curves)

or lost (blue curves). Vertically arranged panels indicate what type of error, if any, was made on the first game.

The fifth game was the first game where the differences between the distribution of behavior between players

who initially won and those who initially lost was not significant at any standard level for any of the three types of

error.

confidence, whereas in contexts where players’ actions differ, the model can assign probability to

each action.

After opening each box, a player makes a binary decision about whether or not to stop. Our

dataset consists of a set of stopping decisions ygt ∈ {0,1} that the player made in game g after seeing

non-dominated box t. If the player stopped at box t in game g, then ygt = 1; otherwise, ygt = 0. Our

dataset also contains the history xgT :t =
(
xgT , x

g
T−1, . . . , x

g
t

)
of box values that the player had seen

until each stopping decision. We represent the full dataset by the notation D.

In our setting, a probabilistic model f maps from a history xgT :t to a probability that the agent

will stop. (This fully characterizes the agent’s binary stopping decision.) Each model may take a

vector θ of parameters as input. We assume that every decision is independent of the others, given

the context. Hence, given a model and a vector of parameters, the likelihood of our dataset is the

product of the probabilities of its decisions; that is,

p (D |h, θ) =
∏

(x
g
T :t

,y
g
t )∈D

[f (xgT :t |θ)y
g
t + (1− f (xgT :t |θ)) (1−xgT :t)] .

In Bayesian model comparison, models are compared by how probable they are given the data.

That is, a model f1 is said to have better predictive performance than model f2 if p (f1 |D) >

p (f2 |D), where

p (f |D) =
p(f)p (D |f)

p(D)
. (2)
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With no a priori reason to prefer any specific model, we can assign them equal prior model prob-

abilities p(f). Comparing the model probabilities defined in Equation (2) is thus equivalent to

comparing the models’ model evidence, defined as

p (D |f) =

∫
Θ

p (D |f, θ)p(θ)dθ. (3)

The ratio of model evidences p (D |f1)
/
p (D |f2) is called the Bayes factor (e.g., see Jeffreys 1935,

1961, Kass and Raftery 1995, Kruschke 2015). The larger the Bayes factor, the stronger the evidence

in favor of f1 versus f2.

This probabilistic approach has several advantages. First, the Bayes factor between two models

has a direct interpretation: it is the ratio of probabilities of one model’s being the true generating

model, conditional on one of the models under consideration being the true model. Second, it allows

models to quantify the confidence of their predictions. This quantification allows us to distinguish

between models that are almost correct and those that are far from correct in a way that is

impossible for coarser-grained comparisons such as predictive accuracy.

One additional advantage of the Bayes factor is that it compensates for overfitting. Models with a

higher dimensional parameter space are penalized, due to the fact that the integral in Equation (3)

must average over a larger space. The more flexible the model, the more of this space will have low

likelihood, and hence the better the fit must be in the high-probability regions in order to attain

the same evidence as a lower-parameter model.

The amount by which high-dimensional models are penalized by the Bayes factor depends

strongly upon the choice of prior. The standard Bayesian view is that a model consists of both a

prior and a likelihood; in this view, the dependence of the overfitting penalty upon the prior is

unproblematic, since the prior is part of the model. An alternative view is that likelihood is the

model, while the choice of prior is relatively arbitrary. In this view, the choice of prior constitutes

a “researcher degree of freedom,” whose influence should be minimized. One way to minimize the

impact of the choice of prior is to evaluate models using cross-validation, in which the data are

split into a training set that is used to set the parameters of the model, and a test set that is used

to evaluate the model’s performance.

We use a hybrid of the cross-validation and Bayesian approaches. We first randomly select a

split s= (Dtrain,Dtest), with Dtrain ∪Dtest =D and Dtrain ∩Dtrain = ∅. We then compute the cross-

validated model evidence of the test set Dtest with respect to the prior updated by the training

set p (θ |Dtrain), rather than computing the model evidence of the full dataset D with respect to

the prior p(θ). To reduce variance due to the randomness introduced by the random split, we take

expectation over the split, yielding

Esp
(
Dtest

∣∣f,Dtrain
)

=

∫ [∫
Θ

p (Dtest
∣∣f, θ)p (θ ∣∣Dtrain

)
dθ

]
p(s)ds, (4)
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where p(s) is a uniform distribution over all splits. The ratio of cross-validated model evidences

Esp (Dtest |f1,Dtrain)

Esp (Dtest |f2,Dtrain)
(5)

is called the cross-validated Bayes factor. As with the Bayes factor, larger values of (5) indicate

stronger evidence in favor of f1 versus f2.

The integral in Equation (4) is analytically intractable, so we followed the standard practice of

approximating it using Markov chain Monte Carlo sampling. Specifically, we used the PyMC soft-

ware package’s implementation (Salvatier et al. 2016) of the Slice sampler (Neal 2003) to generate

25000 samples from each posterior distribution of interest, discarding the first 5000 as a “burn

in” period. We then used the “bronze estimator” of Alqallaf and Gustafson (2001) to estimate

Equation (4) based on this posterior sample.

5.2. Models

We start by defining our candidate models, each of which assumes that an agent decides at each

non-dominated box whether to stop or continue, based on the history of play until that point. For

notational convenience, we represent a history of play by a tuple containing the number of boxes

seen i, the number of non-dominated boxes seen i∗, and the percentile of the current box qi as

estimated using Equation 1. Formally, each model is a function f :N×N× [0,1]→ [0,1] that maps

from a tuple (i, i∗, qi) to a probability of stopping at the current box.

Definition 1 (Value Oblivious). In the Value Oblivious model, agents do not attend to the

specific box values. Instead, conditional upon reaching a non-dominated box i, an agent stops with

a fixed probability pi.

fvalue-oblivious
(
i, i∗, qi

∣∣∣{pj}T−1

j=1

)
= pi.

Definition 2 (Viable k). The Viable k model stops on the kth non-dominated box.

fviablek (i, i∗, qi |k, ε) =

{
ε if i∗ <k,

1− ε otherwise.

In this model and the next agents are assumed to err with probability ε on any given decision.

Definition 3 (Sample k). The Sample k model stops on the first non-dominated box that it

encounters after having seen at least k boxes, whether those boxes were dominated or not.

f sample (i, i∗, qi |k, ε) =

{
ε if i < k,

1− ε otherwise.

When k = dT/ee and ε = 0, this corresponds to the optimal solution of the classical secretary

problem in which the distribution is unknown.
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Definition 4 (Multiple Threshold). The Multiple Threshold model stops at box i with

increasing probability as the box value increases. We use a logistic specification which yields a

sigmoid function at each box i such that at values equal to the threshold τi an agent stops with

probability 0.5; an agent stops with greater (less) than 0.5 probability on values higher (lower)

than τi, with the probabilities becoming more certain as the value’s distance from τi grows. We

also learn a single parameter λ across all boxes representing how quickly the probability changes

as a box value becomes further from τi. Intuitively, λ controls the slope of the sigmoid.5

f thresholds
(
i, i∗, qi

∣∣∣λ,{τj}T−1

j=1

)
=

1

1 + exp[λ(qi− τi)]
.

When the thresholds are set to the critical values of Table 1 such that τi = z(T−i+1) and λ is set

sufficiently high, this model corresponds to the optimal solution of the secretary problem with a

known distribution.6

Definition 5 (Single Threshold). The Single Threshold model is a simplified threshold

model in which agents compare all box values to a single threshold τ rather than box-specific

thresholds.

f single-threshold (i, i∗, qi |λ, τ) =
1

1 + exp[λ(qi− τ)]
.

Definition 6 (Two Threshold). The Two Threshold model is another simplified threshold

model in which agents compare all “early” box values (the first bT/2c boxes) to one threshold (τ0)

and all “late” box values to another (τ1).

f two-threshold (i, i∗, qi |λ, τ0, τ1) =
1

1 + exp[λ(qi− τν)]
,

where

τν =

{
τ0 if i < T

2
,

τ1 otherwise.

This is a low-parameter specification that nevertheless allows for differing behavior as a game

progresses (unlike Single Threshold).

Priors. Each of the models described above has free parameters that must be estimated from

the data. We used the following uninformative prior distributions for each parameter:

pi ∼Uniform[0,1] τ, τi, τ0, τ1 ∼Uniform[0,1]

k∼Uniform{1,2, . . . , T − 1} λ∼Exponential(1000).

ε∼Uniform[0,0.5]

5 We considered models with one λ per box but they did not perform appreciably better than the single λ models.

6 More precisely, it approximates the optimal model arbitrarily closely as λ→∞.
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(b) Fifteen Boxes

Figure 8 Cross-validated Bayes factors for each model, compared to the lowest-evidence model in each game.

The hyperparameter for precision parameters λ was chosen manually to ensure good mixing of the

sampler. The prior for parameter k is a discrete uniform distribution; the other uniform distribu-

tions are continuous uniform distributions over intervals. Each parameter’s prior is independent;

e.g., in the single-threshold model a given pair (λ, τ) has prior probability p(λ, τ) = p(λ)p(τ).

Related work. Previous work has also evaluated threshold-based models of human behavior in

optimal stopping problems. Guan et al. (2014) study a threshold model in which each participant

has a personal latent threshold for each box, constrained to decrease as more boxes are opened.

Guan et al. (2015) compare this model to a hierarchical model in which the deviation of participants’

thresholds from the optimum are directly modeled. Lee (2006) estimates a family of threshold-based

models, which include models with single thresholds, two thresholds, and separate thresholds for

each box. Importantly, all of these models estimate thresholds separately for each participant, but

the thresholds are shared across all repetitions of the task; in contrast, we estimate the Multiple

Thresholds model separately for each repetition, but share thresholds across participants.

5.3. Model comparison results

Figure 8 gives the cross-validated Bayes factors for each of the models of Section 5.2. The models

were estimated separately for each number of games; that is, each model was estimated once on all

the first games played by participants, again on all the second games, etc. This allows us to detect

learning by comparing the estimated values of the parameters across games. The cross-validated

Bayes factor is defined as a ratio between two cross-validated model evidences. Since we are instead

comparing multiple models, we take the standard approach of expressing each factor with respect

to the lowest-evidence model for a given number of games. These normalized cross-validated Bayes
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factors are consistent, in the sense that if the normalized cross-validated Bayes factor for model h1

is k times larger than the normalized cross-validated Bayes factor for h2, then the cross-validated

Bayes factor between h1 and h2 is k. As a concrete example, the Two Threshold model had the

lowest cross-validated model evidence for participants’ first games in the seven box condition; the

cross-validated model evidence for the Value Oblivious model was 1021 times greater than that of

the Sample k model, and 1040 times greater than that of the Viable k model.

In first game played, in both the seven box and fifteen box conditions, and in second game in the

fifteen box condition, the best performing model was Value Oblivious. In all subsequent games and

in both conditions, Viable k was the worst performing model7 and the Multiple Threshold model

was the best performing model. The Two Threshold model was the next-best performing model.8

In Figure 11 of the appendix, we present the results of Figure 8 using the standard Bayes

factor, in which the performance of the model on the entire dataset is marginalized over the prior

distribution, rather than marginalizing the performance of the model on a test dataset over the

posterior distribution with respect to a disjoint training dataset. The primary difference between

the evaluation by standard Bayes factors and the results of this section is the performance of the

Two Threshold model. In the seven box condition, the Two Threshold model has a very similar

Bayes factor to the multiple threshold model (after game 2), rather than having decisively lower

performance. In the fifteen box condition, the Two Threshold model has a higher Bayes factor

than the multiple threshold model, in constrast to the cross-validated Bayes factors which are very

similar. These differences are consequences of the uninformative priors that we impose on threshold

values in these models, which cause the Bayes factor to favor lower-dimensional models (such as

Two Threshold) more strongly than the cross-validated Bayes factor.

Evidently, players behaved consistently with the optimal class of model for the known

distribution—multiple thresholds—as early as the second game. This is consistent with the obser-

vations of Section 4.1, in which players’ outcomes improved with repeated play. In addition, it is

consistent with the learning of optimal thresholds in Figure 6(a) but improves on that analysis

because here the most common stopping points—the early boxes—do not dominate the average.

Furthermore, players’ estimated thresholds approached the theoretically optimal values remarkably

quickly. Figure 9 shows the estimated thresholds for the seven box condition, along with their 95%

posterior credible intervals. The estimated thresholds for the second and subsequent games are

7 Recall that although Sample k was inspired by the optimal strategy for the classical secretary problem, neither
Sample k nor Viable k are optimal strategies for the repeated secretary problem.

8 We tested whether a different boundary between the two thresholds would perform better by estimating a model in
which the choice of boundary was a separate parameter. This model actually performed worse that the Two Threshold
model. This indicates that the data do not argue strongly for a different boundary, and hence the only effect of adding
a boundary parameter was overfitting.



Authors’ names blinded for peer review
24 Article submitted to Management Science; manuscript no. MS-17-01723.R1

●

●
● ● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

● ●

●

●

●

●

● ●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

● ●

●
●

●

Game 7 Game 8 Game 9

Game 4 Game 5 Game 6

Game 1 Game 2 Game 3

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Box

E
st

im
at

ed
 T

hr
es

ho
ld

Legend ●Critical Value Estimated Threshold

Figure 9 Estimated thresholds in the seven box games. Error bars represent the 95% posterior credible interval.

strictly decreasing in the number of boxes seen, like the optimal thresholds. Overall, the thresholds

appear to more closely approximate their optimal values over time. After only four games, each

threshold’s credible interval contains the optimal threshold value.9 Thus, workers learned to play

according to the optimal family of models and learned the optimal threshold settings within that

family of models.

The success of the Value Oblivious model in the first game (Figure 8) suggests that neither of the

threshold-based models fully capture players’ decision making in their initial game. This is further

supported by the best-estimates of thresholds for the first game: unlike subsequent games which

have thresholds that strictly decrease in number of boxes seen, in the first game the estimated

thresholds are strictly increasing in number of boxes seen. This is consistent with players using

a Value Oblivious model. If players who stop on later boxes do so for reasons independent of the

box’s value, then they will tend to stop on higher values merely due to the selection effect from

only stopping on non-dominated boxes.

9 In games 5–8, either one or two credible intervals no longer contain the corresponding optimal value; by game 9 all
thresholds’ credible intervals again contain their optimal values. We caution that this is not necessarily equivalent to
the true values’ differing significantly from optimal in games 5–8; see Wagenmakers et al. (submitted) for a detailed
discussion of this issue.
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In sum, the switch from increasing to decreasing thresholds in Figure 9 is consistent with moving

from a value-oblivious strategy, which generalizes the optimal solution for the classical problem,

to a threshold strategy, which generalizes the optimal strategy for known distributions.

One possible explanation for the apparent change in strategy is that players spent the first

few games primarily collecting information about the distribution, and then switched to trying to

actually win the game only in later games; that is, they spent the first few games exploring, and

then switched to exploiting only later (Fang and Levinthal 2009). In that situation, one would

expect to see players opening more boxes in early games than in later games, since that is the way

to learn the most about the distribution. We do indeed see that players’ search depth decreases

with experience (Figure 5). However, the most common behavior in the first game (for both the

seven and fifteen box conditions) was for players to stop before encountering the maximum (see

the blue traces in Figure 3). This suggests that players are attempting to win—even in the first

game—rather than purely exploring.

6. Conclusion: Behavioral Insights

The main research questions we addressed in this work were whether people improve at the secre-

tary problem—a paradigmatic optimal search problem—through repeated play, and whether they

approach optimality with experience. The investigation is both qualitative, inferring which decision

rules players use, and quantitative, estimating decision thresholds and computing rates of success.

As Lee (2006) observed, in addition to its intrinsic interest, the secretary problem is a valuable

setting for studying human problem solving. Its simple rules enable it to be studied empirically,

while its complex solution allows for the comparison of human success rates to optimal success

rates and, importantly, human decision procedures to optimal decision procedures.

In contrast to prior research (Campbell and Lee 2006, Lee 2006, Seale and Rapoport 1997),

across thousands of players and tens of thousands of games, we document fast and steep learning

effects. Rates of winning increase by about 25 percentage points over the course of the first ten

games (Figure 3).

From the results in this article, it seems as if players not only improve, but also learn to play in

a way that approaches optimality in several respects, which we list here. Rates of winning come

within about five percentage points of the maximum win rates possible, and this average is taken

without cleaning the data of players who were obviously not trying; removing such players would

bring the win rates even closer to the maximum. In looking at candidate-by-candidate decision

making, players’ probabilities of stopping came to approximate an optimal stop function after a

handful of games (Figure 6). And similar deviations from the optimal pattern were also observed in

a very idealized agent that learns from data, suggesting that some initial deviation from optimality
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is inevitable. Perhaps even more remarkably, they were able to do this with no prior knowledge of

the distribution and, consequently, sometimes unhelpful feedback (Figure 7).

In the first game, player behavior was relatively well fit by the Value Oblivious model which

had a fixed probability of stopping at each candidate, independent of the values of the candidates.

In later plays, threshold-based decision making—the optimal strategy for known distributions—fit

the data best (Figure 8). Further analyses uncovered that players’ implicit thresholds were close

to the optimal critical values (Figure 9), which is surprising given the small likelihood that players

actually would, or could, solve for these values.

In domains that are well-described as optimal stopping problems, these results mean that the

optimal procedure is likely to give a close approximation of human behavior. This is in contrast to

many areas of economics, where human behavior is known to qualitatively and consistently deviate

from optimal (e.g., Camerer 2003, Goeree and Holt 2001, Tversky and Kahneman 1992).

A few points of difference could explain the apparent departure from prior empirical results.

First, to our knowledge, ours is the first study to begin with an unknown distribution that players

can learn over the course of the experiment. Previous studies have provided rank information only

(e.g., Seale and Rapoport 1997), given a full description of the distribution, leaving no scope for

learning (e.g., Lee 2006), or presented samples from the distribution to the participants before

the main experiment (e.g., Rapoport and Tversky 1970, Guan and Lee 2017). Seemingly small

differences in instructions to participants could have a large effect. As mentioned, other studies

have informed participants about the distribution, for example its minimum, maximum, and shape.

Second, some prior experimental designs have presented ranks or manipulated values that made

it difficult to impossible for participants to learn the distributions. Third, past studies have used

relatively few participants, making it difficult to detect learning effects. For example, Campbell

and Lee (2006) have 12 to 14 participants per condition and assess learning by binning the first 40,

second 40, and third 40 games played. In contrast, with over 6,000 participants, we can examine

success rates at every number of games played beneath 20 with large sample sizes. This turns out

to be important for testing learning, as most of it happens in the first 10 games. While our setting

is different than prior ones, the change of focus seems merited because many real-world search

problems (such as hiring employees in a city) involve repeated searches from learnable distributions.

A promising direction for future research would be to propose and test a unified model of search

behavior that can capture several properties observed here such as: the effects on unhelpful feedback

(Figure 7), the transition from value-oblivious to threshold-based decision making (Figure 8),

and the learning of near-optimal thresholds (Figure 9). Having established that people learn to

approximate optimal stopping in repeated searches through distributions of candidates, the next

challenge is to model how individual strategies evolve with experience.
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Appendix A: Additional Figures and Tables

Figure 10 Screenshot of the a 15 box treatment with 3 boxes opened.
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(b) Fifteen Boxes

Figure 11 Standard Bayes factors for each model, compared to the lowest-evidence model in each game.



Authors’ names blinded for peer review
28 Article submitted to Management Science; manuscript no. MS-17-01723.R1

Seven Boxes Fifteen Boxes

●

●

●

●●
●● ●

●
●

●

● ●
●

●
●

●

●
●

●

●

●
●

●
●●● ●

● ●
● ●

●
● ● ● ●

●

●

●

●

●
●

●
●

●● ● ●
●

●

● ● ●

●
●

●
●

●

●

●

●

●

● ●

● ●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

● ●
●

● ● ● ●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

● ●
●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0

0.2

0.4

0.6

5 10 15 20 5 10 15 20
Number of Games Played

P
ro

ba
bi

lit
y

Observations ● ● ● ●300 600 900 1200

Stopped ●● ●● ●●On max After max Before max

Figure 12 Rates of winning the game for human players where each player played at least 7 games. Error bars

indicated ±1 standard error, when they are not visible they are smaller than the points. The area of each point is

proportional to the number of players in the average.
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Figure 13 In Figure 6(a) different players contribute to different curves. For example, a player who only played

one time would only contribute to the red curve, while someone who played 10 times would contribute to all

three curves. To address these selection effects, in this plot, we restrict to the first 7 games of those who played

at least 7 games.
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Table 3 Table of p-values of comparisons of distributions of winning and losing players, broken out by the three

possible error types in the first game (no error, under-search, over-search). The p-values were computed on a

2× 2 contingency table for each game and error initial error type. The columns were number of non-dominated

boxes stopped on, and number of non-dominated boxes passed on. There was one row for subjects who won the

first game, and one for subjects who lost the first game.

game 2 3 4 5 6

no error 0.02 0.56 0.78 0.27 0.96
under-search < 10−10 0.05 0.08 0.19 0.48
over-search < 10−10 0.01 0.01 0.34 0.17
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