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Abstract. In the classical secretary problem, the objective is to select
the candidate of maximum value among a set of n candidates arriving
one by one. The value of the candidates come from an unknown distribu-
tion and is revealed at the time the candidate arrives, at which point an
irrevocable decision on whether to select the candidate must be made.
The well-known solution to this problem, due to Dynkin, waits for n/e
steps to set an “aspiration level” equal to the maximum value of the can-
didates seen, and then accepts the first candidate whose value exceeds
this level. This guarantees a probability of at least 1/e of selecting the
maximum value candidate, and there are distributions for which this is
essentially the best possible. One feature of this algorithm that seems
at odds with reality is that it prescribes a long waiting period before
selecting a candidate. In this paper, we show that if a standard hazard
rate condition is imposed on the distribution of values, the waiting pe-
riod falls from n/e to n/ log(n), meaning that it is enough to observe
a diminishingly small sample to set the optimal aspiration level. This
result is tight, as both the hazard condition and the optimal sampling
period bind exactly for the exponential distribution.

1 Introduction

The classical secretary problem, dating back to late 1950’s and early 1960’s,
asks whether one can hire the best secretary among a set of n candidates with
unknown values arriving for interviews in a random order. Only one offer can be
made, and the decision about hiring a candidate has to be made immediately
after the interview and before seeing the next candidate. The surprising result
(often attributed to Dynkin [2]) is that it is indeed possible to select the best
secretary with a constant probability using the following strategy: do not make
any offer to the first n/e candidates that arrive, and after that, make an offer to
the first candidate whose value exceeds the value of all the candidates seen so
far. In other words, the algorithm starts with an exploration phase that sees the
first n/e candidates and sets an aspiration level equal to the highest value seen in
the exploration phase. After that, the algorithm hires the first candidates that
exceeds the aspiration level. We call such a strategy an “aspiration strategy”.
Many variants of the secretary problem and this solution, and their applications
to problems such as online mechanism design for auctions are studied in the
literature; see, for example, the survey papers [1, 4].



An alternative formulation of the secretary problem (and according to Fer-
guson [3], the formulation closer to the original “game of googol” puzzle due to
Martin Gardner in 1960 [5]) is as follows: An adversary selects the distribution
from which the n values will be drawn independently.1 The algorithm learns
about this distribution (but not the actual values), and then sees the values one
by one. The algorithm must decide when to stop, at which point it receives the
last value seen. The objective is to maximize the probability that this value is
the maximum value, or, equivalently, the expectation of the ratio of this value
and the ex post maximum value in the sequence. As observed by Ferguson [3],
this formulation of the problem is equivalent to the original one, and the same
aspiration strategy achieves a factor of 1/e. Furthermore, this result is tight,
that is, there is a distribution of values for which, even knowing the distribution,
the optimal strategy is the aspiration strategy with a factor of 1/e.

One unsatisfactory feature of the aspiration strategy is that it requires a
long exploration phase (observing a constant fraction of the candidates) before
setting the aspiration level. One might suspect that this is due to the fact that
there is no penalty (except the possibility of missing the maximum value) in the
secretary problem for waiting, but surprisingly, similar results hold for variants
of the secretary problem where waiting is punished by discounting the values
or by setting an explicit cost for each period that no one is hired [4, 7]. The
main message of this paper is to show that a long exploration phase is indeed
an artifact of the assumption that the values are coming from a worst-case
distribution. We show that if we impose a hazard rate condition, frequently
used in engineering analyses and the analysis of auctions, the picture changes
drastically: even the worst value distribution satisfying this condition requires
an exploration phase of length n/ log(n), significantly smaller than n/e.

2 The Model

Consider a setting where one needs to hire a secretary among a set of n potential
candidates. These potential candidates arrive one per time period. Candidate i
has a value vi. vi’s are independently and identically distributed according to a
distribution F with cdf f . The value of vi is revealed when the i’th candidate
arrives. The objective is to give a termination rule (i.e., an algorithm that after
observing the first i values decides whether to stop or to continue) that stops at
the candidate with the maximum value among the n candidates. The algorithm
does not have any knowledge of the distribution F .

A standard approach to solve the above problem is to collect data by ob-
serving vi’s for k periods, set an aspiration level equal to the maximum value
1 To be precise, Gardner’s formulation does not assume the values are selected inde-

pendently; instead, it assumes that the adversary selects the values from any joint
distribution that is permutation invariant (exchangeable). However, the assumption
that the values are chosen independently is nearly without loss of generality since
an infinite sequence of exchangeable random variables is conditionally independent
by Kingman’s theorem [6].



observed during those k periods, and then accept the first candidate observed
with value exceeding the aspiration level, or the last candidate. We call such a
strategy an aspiration strategy. A classical result due to Dynkin [2] shows that
an aspiration strategy with k = n/e picks the candidate with the maximum
value among all n candidates with probability at least 1/e. Furthermore, this is
essentially the best possible, that is, there are distributions for which no algo-
rithm can guarantee a probability more than 1/e of picking the candidate with
the maximum value.

In this paper, we focus on a special class of value distributions F . First,
we assume that values are all positive, that is, F has support on [0,∞) and
F (0) = 0. This is essentially without loss of generality, as any candidate with
negative or zero value can be discarded. More importantly, we assume that the
distribution F satisfies the monotone hazard rate condition, which means that
the hazard function f(y)

1−F (y) is a monotone non-decreasing function of y. This
assumption is standard in engineering applications and auction theory [8], and
intuitively means that given that the value of a candidate is not less than y, the
likelihood that it is equal to y increases as y increases. As an example, Gaussian,
uniform, and exponential distributions satisfy this property.

In addition to the above, we make the simplifying assumption that the values
are bounded. Therefore, the inverse function F−1(z) := inf{y ∈ [0,∞) : F (y) ≥
z} is well-defined on its domain [0, 1] and satisfies F−1(0) = 0 and F−1(1) <∞.2

3 Main Result

Our main result is to analyze the optimal sample size in an aspiration strategy,
assuming that the value distribution satisfies the hazard rate condition. This is
stated in the following theorem.

Theorem 1. Suppose the value distribution F satisfies the above conditions.
Then the optimal sample size in an aspiration strategy does not exceed

n− 1∑n−1
i=1

1
i

− 1.

Proof. Consider the optimal aspiration strategy, and let y denote the realized
maximum value of the first k observations. The probability density function
associated with this event can be written as kF (y)k−1f(y). The strategy then
performs a search from candidates k+1 to n. Period j (j > k) is reached if none
of the earlier values are acceptable. This happens with probability F (y)j−k−1,
and in this case if the value x of the j’th candidate exceeds y (or if j = n), it is
accepted. Thus the payoff in an aspiration strategy associated with setting the
aspiration level with k observations is
2 It is not hard to see that our proof works for a more general class of distributions,

satisfying the condition that limz→1(1 − z)F−1(z) = 0. This includes distributions
such as the exponential distribution. Details of the proof is left to the final version
of the paper.



πk =
∫ ∞

0

kF (y)k−1f(y)
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F (y)j−k−1

∫ ∞
y

xf(x)dx+ F (y)n−k−1

∫ ∞
0

xf(x)dx
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0

kf(y)
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F (y)j−2

∫ ∞
y

xf(x)dx+ F (y)n−2

∫ ∞
0

xf(x)dx

 dy

= k
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F (y)j−1
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y

xf(x)dx

∣∣∣∣∣∣
∞
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∫ ∞
0
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F (y)j−1
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yf(y)

 dy

+
k

n− 1
F (y)n−1

∣∣∣∣∞
y=0

∫ ∞
0

xf(x)dx

= 0 + k

n−1∑
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∫ ∞
0

y
F (y)j−1

j − 1
f(y)dy +

k

n− 1

∫ ∞
0

xf(x)dx

= k

n−2∑
j=k

∫ 1

0

F−1(z)
zj

j
dz +

k

n− 1

∫ 1

0

F−1(z)dz,

where the third equation follows from integration by parts, and the last equation
is using the change of variables z = F (y). Thus,

πk+1 − πk = (k + 1)
n−2∑

j=k+1

∫ 1

0

F−1(z)
zj

j
dz − k

n−2∑
j=k

∫ 1

0

F−1(z)
zj

j
dz +

1
n− 1

∫ 1

0

F−1(z)dz

=
n−2∑

j=k+1

∫ 1

0

F−1(z)
zj

j
dz −

∫ 1

0

F−1(z)zkdz +
1

n− 1

∫ 1

0

F−1(z)dz

=
∫ 1

0

F−1(z)

 n−2∑
j=k+1

zj

j
− zk +

1
n− 1

 dz

= F−1(z)
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zj+1

j(j + 1)
− zk+1

k + 1
+

z

n− 1

∣∣∣∣∣∣
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z=0

−
∫ 1

0

F−1′(z)

 n−2∑
j=k+1

zj+1

j(j + 1)
− zk+1

k + 1
+

z

n− 1

 dz

= −
∫ 1

0

F−1′(z)

 n−2∑
j=k+1

zj+1

j(j + 1)
− zk+1

k + 1
+

z

n− 1

 dz, (1)



where the last equation follows from the fact that F−1(1) <∞ and the identity

1
n− 1

+
n−2∑

j=k+1

1
j(j + 1)

− 1
k + 1

= 0. (2)

Using the same identity, we can write

πk+1 − πk = −
∫ 1

0

F−1′(z)

 n−2∑
j=k+1

zj+1 − z
j(j + 1)

− zk+1 − z
k + 1

 dz

=
∫ 1

0

F−1′(z)(1− z)

 n−2∑
j=k+1

1
j(j + 1)

j∑
i=1

zi − 1
k + 1

k∑
i=1

zi

 dz.

This can be written as

πk+1 − πk =
∫ 1

0

F−1′(z)(1− z)β(z)dz, (3)

where

β(z) =
n−2∑

j=k+1

1
j(j + 1)

j∑
i=1

zi − 1
k + 1

k∑
i=1

zi.

Since F−1′(z) = 1
f(F−1(z)) , the function (1 − z)F−1′(z) = 1−z

f(F−1(z)) is the com-

position of the function 1−F (y)
f(y) , which is non-increasing by the hazard rate con-

dition, and the function F−1, which is non-decreasing. Therefore, (1−z)F−1′(z)
is a non-increasing function of z. The function β(z) can be simplified as follows:

β(z) =
n−2∑

j=k+1

1
j(j + 1)

j∑
i=k+1

zi +

 n−2∑
j=k+1

1
j(j + 1)

− 1
k + 1

 k∑
i=1

zi

=
n−2∑

i=k+1

n−2∑
j=i

1
j(j + 1)

zi − 1
n− 1

k∑
i=1

zi

=
n−2∑

i=k+1

(
1
i
− 1
n− 1

)
zi − 1

n− 1

k∑
i=1

zi

=
n−2∑

i=k+1

zi

i
− 1
n− 1

n−2∑
i=1

zi, (4)

where the second and the third equations follow from the identity (2). This
function has the following properties:

1. β(0) = 0.
2. For z > 0 sufficiently small, β(z) < 0. This follows from β′(0) = −1

n−1 < 0.



3. There is a z∗ ∈ (0, 1] with β(z) > 0 if and only if z > z∗.

The last property follows from expressing β as

β(z) = zk

(
n−2∑

i=k+1

zi−k

(
1
i
− 1
n− 1

)
− 1
n− 1

k∑
i=1

zi−k

)
and noting that the term in parentheses is increasing in z, so that once the term
is positive it remains positive.

Claim. Assume β is a function satisfying the above properties. If
∫ 1

0
β(z)dz ≤ 0,

then for every non-negative non-increasing function x(.) we have
∫ 1

0
x(z)β(z)dz ≤

0.

Proof. Consider the value z∗ guaranteed to exist by property (3). We have∫ 1

0

x(z)β(z)dz =
∫ z∗

0

x(z)β(z)dz +
∫ 1

z∗
x(z)β(z)dz

≤
∫ z∗

0

x(z∗)β(z)dz +
∫ 1

z∗
x(z∗)β(z)dz

= x(z∗)
∫ 1

0

β(z)dz

≤ 0.

The first inequality replaced x in the first integral with the lowest possible value
given the other values, increasing the objective function since β was negative, and
x in the second integral with the highest possible, again increasing the objective
function since β was positive.

Now apply the claim with x = F−1′(z)(1− z). By (4), we have∫ 1

0

β(z)dz =
n−2∑

i=k+1

∫ 1

0

zi

i
dz − 1

n− 1

n−2∑
i=1

∫ 1

0

zidz

=
n−2∑

i=k+1

1
i(i+ 1)

− 1
n− 1

n−2∑
i=1

1
i+ 1

=
1

k + 1
− 1
n− 1

n−1∑
i=1

1
i

Therefore, when k ≥ n−1∑n−1

i=1
1
i

− 1, by the above equation
∫ 1

0
β(z)dz ≤ 0. There-

fore, since x = F−1′(z)(1− z) is a non-negative and non-increasing function, by
Claim 3 and Equation (3) we obtain

πk+1 − πk =
∫ 1

0

x(z)β(z)dz ≤ 0.

Thus, the sample size k that maximizes πk cannot be larger than n−1∑n−1

i=1
1
i

− 1.



Note that
∑n−1

i=1
1
i ≥ lnn. Thus, an upper bound for the optimal k is

n− 1
lnn

− 1 <
n

lnn
.

The upper bound is strict in the sense that it is taken on exactly when the
distribution is exponential and satisfies the hazard rate constraint with equality.

Our result shows that, for example, when n is a million, it is enough to
explore 7.2% of the candidates before setting an aspiration level, rather than
36.8% as in the standard result. Moreover the share of observations devoted
to learning falls as the sample size rises, which is a natural conclusion, as the
standard mechanism does a lot of search.

How well does the improved calculation do? Table 1 reports estimated values
using aspiration strategies with exploration phases of length n/e and n/ lnn, for
various values of n and an exponential distribution. All values are expressed as
a percentage of the expected maximum realized value∫ ∞

0

nxF (x)n−1f(x)dx.

The column “Higher” gives the proportion of times a strategy beats the other
strategy. Thus the n/e strategy wins over n/ lnn frequently, but the n/ lnn
produces a higher value.

n/e n/ ln n Optimal
n Value Higher Value Higher Search

50 64% 22% 69% 12% 88%

100 64% 27% 71% 15% 89%

500 64% 36% 76% 20% 92%

1000 63% 38% 78% 22% 92%

5,000 63% 43% 81% 25% 94%

10,000 63% 44% 82% 26% 94%

Table 1. Comparison between three aspiration strategies with exponential distribution

The last column of the table sets out the average values associated with opti-
mal search, conditional on the exponential distribution. Optimal search involves
setting a critical value ct in each time period t and accepting an offer if it exceeds
that critical value. The critical values ct can be computed using a dynamic pro-
gramming approach as follows: clearly cn = 0 as any offer better than nothing
is acceptable in the last step. This produces a last period expected value vn of∫ ∞

0

xf(x)dx.

Let vt be the value of searching starting from period t. This value is

vt =
∫ ∞

ct

xf(x)dx+ F (ct)vt+1.



Clearly vt is maximized by ct = vt+1, which gives

vt =
∫ ∞

vt+1

xf(x)dx+ F (ct)vt+1 = vt+1 +
∫ ∞

vt+1

(1− F (x))dx.

It is not hard to see that the upper bound on the length of the exploration
phase is tight for the exponential distribution, but can be too large for other
distributions. For example, for the uniform distribution, by Equation (1) we
have

πk+1 − πk = −
∫ 1

0

 n−2∑
j=k+1

zj+1

j(j + 1)
− zk+1

k + 1
+

z

n− 1

 dz

= −
n−2∑

j=k+1

1
j(j + 1)(j + 2)

+
1

(k + 1)(k + 2)
− 1

2(n− 1)

=
1
2

(
1

(k + 1)(k + 2)
− 1
n

)
.

Thus, the optimal k for the uniform distribution is less than
√
n. These results

give insight into optimal experimentation. The standard approach utilizes 37%
of the data for experimental purposes. In contrast, when tails are not too fat,
one should use at most a 1/ lnn fraction for learning about the distribution.
With the uniform distribution, a 1/

√
n fraction is the appropriate length of the

experimentation phase.
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