
1

Abstract. It is a well-known statistical property that learning tends to slow down with each additional
data point. Thus even if scale effects are important in web search, they could be important in a range
that any viable entrant could easily achieve. In this paper we address these questions using browsing
logs that give click-through-rates by query on two major search engines. An ideal experiment would be
to fix the “query difficulty” and exogenously provide more or less historical data. We approximate the
ideal experiment by finding queries that were not previously observed. Of these “new queries”, some
grow to be moderately popular, having 1000–2000 clicks in a calendar year. We examine ranking quality
during the lifespan of the query and find statistically significant improvement on the order of 2–3% and
learning faster at lower levels of data. We are careful to rule out alternate explanations for this pattern.
In particular, we show that the effect is not explained by new, more relevant documents entering the
landscape, rather it is mainly shifting the most relevant documents to the top of the ranking. We
thus conclude they represent direct scale effects. Finally, we show that scale helps link new queries to
existing queries with ample historical data by forming edges in the query document bipartite graph.
This “indirect knowledge” is shown to be important for “deflating uniqueness” and improving ranking.



Scale Effects in Web Search

Di He1, Aadharsh Kannan1, Tie-Yan Liu1, R. Preston McAfee1, Tao Qin1, and Justin M. Rao2

1 Microsoft AI & Research
2 HomeAway Inc

Keywords: scale effects, direct effects, indirect effects, intent clustering, unsupervised learning, web search

1 Introduction

A key question in the analysis of web search markets is the degree increased scale confers a direct per-
formance imagine advantage. Consider two entirely different worlds. In the first, ranking quality is driven
overwhelmingly by algorithmic innovation and fixed document features. In this world, a well-funded new
entrant could potentially produce results of quality superior to the entrenched market leader. In the second,
learning from historical queries is critical to ranking quality. A superior, but data-starved algorithm could
perform much worse than the incumbent’s. Although these two worlds are dramatically different in terms of
the potential for innovation and competitive dynamics, little is known about which one we live in. Further, it
is a well-known statistical property that learning tends to slow down with each additional data point. Thus
even if scale effects are important, the steep part of the learning curve could be in a range that any viable
entrant could easily achieve.

In this paper we address these questions using browsing logs that give click-through-rates (CTR), a
natural measure of whether or not a set of results met the user’s need, by query on two major search engines.
We start by documenting the fact that more common queries indeed have higher CTR. The relationship is
proportional to the square root of the log of historical clicks, indicating that increases are higher at lower
data levels. Both search engines show similar functional forms.

These high-level correlations cannot be viewed as causal relationships because more popular queries
could be innately easier to satisfy user intent. An ideal experiment would be to fix the “query difficulty”
and exogenously provide more or less historical data. This is, of course, not possible. We approximate the
ideal experiment by finding queries that were not previously observed. Of these “new queries”, some grow
to be moderately popular, having 1000–2000 clicks in a calendar year. We examine ranking quality during
query lifetime and find statistically significant improvement on the order of 2–3%, with faster improvement
at lower levels of data. We are careful to rule out alternate explanations for this pattern. In particular, we
show that the effect is not explained by new, more relevant documents entering the landscape, rather it is
mainly shifting the most relevant documents to the top of the ranking. We thus conclude they represent
direct scale effects.

The fact that learning is fastest at low levels of data is a double-edged sword for a potential entrant.
On the one hand, it seems to indicate that only a modest scale is required to achieve viability. While this
is good news for relatively popular queries, which do account for a majority of searches, it is bad news for
rarer queries, which account for the majority of queries. For example, in 2007 Google reported that 20–25%
of the queries they see each day are unique when compared to the most recent month.3 Moreover, most users
submit at least some “long tail” queries [6].

The issue of long-tail queries adds a nuance to our analysis. If most queries really only have no more
than five historical examples, then perhaps scale does not play much of a role after all. However it has been
shown that historical examples of related queries can be linked to seemingly rare queries by applying clusters
and graph cutting techniques to the query-document bipartite graph [2][9][8]. This graph can be used to
generate related queries and leverage historical examples that differ in minor ways from the target query. To
understand the role of scale in this domain, we apply a clustering algorithm motivated by past work. To do
so, we take the query-document graph—the total nodes number nearly 10 billion—and cluster queries that
share the same intent. Human evaluation is used to validate the accuracy of the algorithm.

3 http://searchengineland.com/that-25-new-queries-figure-ballpark-estimate-says-google-11596



3

We use the graph to flexibly “deflate uniqueness” because it creates ties between relatively rare queries to
more common queries that capture similar user intent. We show, for instance that for a set of 1.1 billion “long
tail” queries, there are 10-fold less unique instances of intent. The method naturally surfaces synonyms and
related queries. Experiments reveal that increasing overall scale provides greater edge density, which in turn
allows one to link more rare queries to more common queries with many historical examples. In summary,
this analysis shows that there are additional returns to scale in the form of semantically linking queries and
that queries submitted by users are “not as unique as they appear.”

Finally, we conclude with some thoughts on the larger picture. Our analysis here is not capable of
capturing all the returns to scale, rather we focus on clean identification in relatively controlled environments.
That being said, it is important to note the CTR impact of scale we document appears modest overall,
order 2–3% of CTR. Interpreting magnitudes, however, is a bit tricky. For example, both providers have
CTRs on tail queries in the 70% range. Suppose an entrant could achieve 60% “off the shelf.” Then 2-3%
represents more like 20-30% of the meaningful range in which we expect competitors to be differentiated
and thus appears quite large in this light. We stress that this is only an example to highlight the nuances in
interpreting the magnitudes reported in our study.

2 Data Description

Our data consists of search logs for a period of time greater than 6 months from two large commercial search
engines. The source are proprietary logs of a web browser. In all instances, the same restrictions are applied
to both search providers. For example, the same user types, geographic locations, and so forth. Table 1 shows
that we observe hundreds of billions of searches. This richness will allow us to conduct a detailed analysis of
queries as data accumulates over time.

Table 1. Summary statistics

Provider 1 (# impressions) >200 billion

Provider 2 (# impressions) >300 billion

Provider 1 # clicks >100 billion

Provider 2 # clicks >150 billion

3 Direct Effects of Scale

In this section we study how the search engine performance is related to the volume of historical data for a
target query. We first investigate all the queries in our dataset and then check those relatively new queries,
which have only a few historical clicks.

3.1 Analysis of General Queries

To study the scale effect of a query, ideally, we need to collect its search log from the first time it is observed,
and see how its CTR changes as more people issue it. However, this is infeasible because that a search engine
can only legally keep the data for a limited time4. Thus for popular queries, it is hard (if not impossible) to
know its first appearance. Here we use one year as the range of time for analysis, and collect browsing logs
of two commercial search engines, i.e., Provider 1 and Provider 2. For the log in each provider, we use the
first three month’s data as the benchmark data source, which acts as the data observed in history, and use
the remaining nine months of data as our target data source in analysis. For each query q and each day d
in target data source, we get a pair < H(q, d), CTR(q, d) > in which H(q, d) denotes the historical measure

4 http://searchengineland.com/google-responds-to-eu-cutting-raw-log-retention-time-reconsidering-cookie-
expiration-11443



4

before day d for query q, and CTR(q, d) denotes its CTR in day d. In the experiment, we use click number
as the historical measure, since clicks are the most effective feedback from search users.

For each query, we generate 270 pairs and partition the pairs into buckets according to H(q, d). The
CTR averaged over the pairs in each bucket is shown in Figure 1. We can see from the figure, CTR shows
a positive correlation with the number of historical clicks for both the search providers, and the patterns of
CTR growth of the two providers are similar.

Fig. 1. In aggregate, CTR shows a positive correlation with the number of historical occurrences. Both providers
show a similar relationship.

To quantitatively characterize the scale relationship, we further conduct a regression analysis on the
correlation between the CTR and the number of historical clicks. After trying several different function
families, including linear functions and polynomial function, we find that the square root of the log historical
clicks well approximate the current CTR. Specifically, denote the historical click number as x, we have that
for provider 1

CTR = −0.0530[−0.085,−0.021] + 0.3287[0.315, 0.343]
√
log(x), (1)

and for Provider 2,

CTR = −0.3871[−0.486,−0.288] + 0.4792[0.438, 0.520]
√
log(x). (2)

This shows that there is a strongly positive dependency between the number of historical clicks and the
current search performance. These results can be seen graphically in Figure 2 and Figure 3.

3.2 Scale Effect Analysis on New Queries

One a major concern with the analysis in previous subsection is that the queries falling into different buckets
are not the same. For example, popular queries may express intent that is innately easier to satisfy. Since
these more popular queries would fall into right-side buckets and rare queries into left-side buckets, the
correlation we observe could be due to this confound and not a direct impact of scale. An ideal experiment
would be to fix the “query difficulty” and exogenously provide more or less historical data. Since this is not
possible, we approximate the ideal experiment as follows.

We select a set of queries according to two criteria: (1) a query has less than 200 clicks in the three-month
benchmark data source; (2) the total number of clicks of the query in the calendar year (including both the



5

Fig. 2. Provider 1, relationship between CTR and number of historical examples.

Fig. 3. Provider 2, relationship between CTR and number of historical examples.

benchmark data source and the target data source) is between 1000 and 2000. The first criterion ensures that
such a query is relatively new to the search provider, and the second criterion tries to make that the selected
queries have the similar difficulty the search provider. As a result, there are about 8000 queries selected for
Provider 1 and 10000 for Provider 2. Because we see almost all the queries for one provider, and a much
smaller fraction for the other, the scales are not directly comparable.

Fig. 4. Provider 1, relationship between CTR and number of historical examples for new queries only

For query q, we use CTR(q, c) to denote the CTR of q in period of receiving c+1 to c+100 clicks. For each
selected query q, we get 9 pairs < c,CTR(q, c) >, where c ∈ {100, 200, . . . , 900}. Then we partition the pairs
into buckets according to c and calculate the average CTR over queries in each bucket. It is important to note
that the queries in each bucket are the same, meaning selection effects cannot drive observed relationship.5

5 We do not include the pair < 1000, CTR(q, 1000) > since not all the selected queries have 1100 clicks in the target
data. If we include this pair, the queries in the last bucket will be less than the queries in the left 9 buckets.



6

Fig. 5. Provider 2, relationship between CTR and number of historical examples for new queries only.

We present our aggregated results with error bar (confidence interval = 0.95%) in Figures 4 and 5. From
the curves, overall we observe that CTR grows for new queries for both providers, and the growing trends
are significant. This shows that the scale effect does exist in both search providers on the order of 2% over
the first 1,000 queries. A regression of the same yields for Provider 1 an intercept of 0.6726 [0.6653,0.6787]
and coefficient of 2.116 e-05 [1.03154 e-05, 3.2017 e-05] i.e. anywhere from 1-3% CTR gain per 1000. For
Provider 2 an intercept of 0.7075833 [0.70145,0.99465] and coefficient of 2.083e-05 [9.94658 e-06, 3.172008
e-05] i.e anywhere from 0.99-3% CTR gain per 1000. This is the same order difference observed at the left-
hand side of Figure 1, but it cannot explain the order 20% increase documented in the overall relationship.
While we cannot rule out these are driven by scale effects, the evidence seems indicate that the large Figure
1 differences are more of a selection issue on query difficulty, as learning appears to slow down after 1,000
historical instances.

3.3 Robustness Checks

It is important to consider alternative explanations to direct scale effects. A natural alternative hypothesis
is that improved performance is due to richer or more relevant documents, not better ranking. To see if this
is going on, we revisit our new query analysis and tag URLs that were previously in crawled as “old.” New
URLs would be clicks on links that were not previously available to the ranker. If the growth in CTR was
due to new URLs, we should see the fraction of old URL clicks decrease as we move to the right in Figure 6.
Instead we observe that a constant and very high, about 98%, of clicks are on old URLs. Since this fraction
does not change, it is not able to explain the growth in CTR. Further we can look at whether the ranker is
doing a better job at putting the best links at the top of the page. It is well-known in search that position
causally influences CTR in a multiplicative fashion—placing higher quality links at the top of the page leads
to a increase in user satisfaction [5]. We can only observe click position for one of the two providers that we
have considered, but document a strong, statistically significant improvement with historical examples for a
new query analysis.

A final robustness check is to consider the underlying causal model for why scale can directly improve
results. First, papers have shown how features can be improved, such as including past queries as anchor text
for clicked links [10]. That is, position changes as a result of user behavior. These data can then feed into
the creation of “click graphs” [5, 7, 8] which is useful for building out semantic knowledge around a query
and user level analysis to understand intent satisfaction [3]. Thus far from being a black box, there are many
previously identified causal channels that use historical behavior to directly improve ranking performance.

4 Indirect Effects of Scale

In this section, we explore the effects of data on related queries, which supplement direct query data. To
do so, we first identify related queries by constructing a knowledge graph. We use the cosine measure of
relatedness, and then classify as related or not by the measure exceeds a threshold. To set the threshold, we
use human judgment on a subsample. We then explore how related query knowledge affects the CTR using
regression techniques.



7

Fig. 6. Provider 1, the fraction of clicks that correspond to URLs previously observed. Results indicate a stable and
very high percentage of clicks comes from these documents.

Our data for this section consists of search logs for a period of time greater than 6 months from a large
commercial search engine. The data form a bipartite graph of queries, denoted Q, and documents, denoted
D. Edges are given by the set E represent user clicks connecting queries to documents. Edge weights are given
by the click count Ci,j from query node i to document node j. We combine queries that only have slight
differences in lexical form. To do so we follow standard best practices for normalizing queries: 1) Eliminate
any punctuation marks 2) Split queries into the words (which include numbers) 3) Porter stem words (remove
plurals and other standard stemming operations) to eliminate differences in cases 4) Represent each query
as a bag of the remaining words, sorted alphabetically. This procedure reduces the number of query nodes
by 7%.

Table 2 summarizes the graph and the underlying user activity. The graph has over 7 billion nodes
connected by over 11 billion edges. The total number of clicks exceeds 100 billion. These statistics highlight
the scale of modern search engines and also point to the sparsity of the graph.

Table 2. Summary statistics for the query-document graph and underlying user activity

Cardinality Q (# unique queries) 4.82 Billion

Cardinality D (# unique URLs) 3.26 Billion

Cardinality E (# edges) 11.6 Billion

Number of sessions > 100 billion

Total clicks > 100 billion

4.1 Core Algorithm

We start with the query-document bipartite graph. This can be represented by a matrix with dimensions
card(Q)× card(D). Each column gives a vector for each document where the jth entry gives the clicks from
query j. In other words, it gives the document’s representation in query space. For every pair of documents,
we compute the cosine distance to form an upper triangular document similarity matrix. This requires order
card(D)2

2 calculations. Next, we convert similarity weights to 0 or 1 using a chosen threshold; this censoring
removes weak ties and allows us to form a document similarity graph (we implement multiple thresholds
and use human accuracy ratings and other metrics to find the preferred setting). We find the connected
components from this graph [1] and call them intent clusters. Intent clusters capture groups of documents
that have the same inferred intent because users clicked from similar queries to get to these documents.



8

Finally, we take intent clusters and form the query-intent-cluster bipartite graph. Edge weights are given
by the fraction of clicks from query q that are point to a document in cluster c. Edge weights have the
natural interpretation of the fraction of searches for a given query that had a given intent. If 10% of clicks
from query X map to g1 and 90% map to g2, then we say that query X has intent g2 and g1, with weights
90% and 10% respectively. We will observe that this is very common. It is natural to label each intent cluster
as the query with the highest weight, which we call the “intent query.”

Computing cosine distance is straightforward, but given the query-document bipartite graph has dimen-

sions card(Q)× card(D), doing so requires order card(D)2

2 calculations. Since we implement our approach on
a modest-sized compute cluster, the parallelizable nature of this computation makes it feasible even though
we have billions of nodes.

Using these distance calculations, we form upper-triangular document similarity matrix. The next issue
we have to address concerns the fact that clicks are a form of implicit feedback that contain noise—some
clicks do not represent user intent. This means entries in the similarity matrix are biased away from zero as
compared to ground truth. This points to the use of a threshold wherein similarity scores below the threshold
are given the value 0 and those above are given the value 1. Once values are converted to a binary indicator,
the matrix is converted into document similarity graph for which we can conduct a connected components
analysis using a scalable algorithm.

Ex-ante it is not obvious what value of the threshold is optimal. Thresholds that are too low induce noise
and could lead to massive connected components that do not represent one true intent. Thresholds that are
too high could lead to too sparse a graph, meaning many clusters actually have the same underlying intent.
Based on pre-testing, we choose 4 threshold values: 0.70, 0.80, 0.90 and 0.95. We will later show that human
judgment can help select the optimal threshold

In order to compute connected components we follow a simple strategy of iterative agglomeration. One
can conceptualize this strategy as (a parallel) flood fill algorithm on a Map-Reduce framework. For the first
iteration we treat every document pair (from the similarity matrix) as a separate cluster, identify link nodes
between pairs and merge them. Convergence of link node identification and merging clusters for subsequent
iterations is reached through repetition.

Referring to Algorithm 1. SetOfURLPairs contains a LeftURLId, a RightURLId and RowLabel. Left-
URLId and RightURLId are both ordinal numbers identifying an individual URL. Each one of these elements
represents a non-zero entry in the URL similarity matrix where LeftURLId < RightURLId. RowLabel is an
ordinal number corresponding to every entry in SetOfURLPairs. RenameIfExist replaces the ClusterId with
the SlaveCluster value if there exists an entry in SetOfClusterRenames where MasterCluster = ClusterId else
it returns ClusterId. MaxIterationLimit is a computation limit that is set to avoid infinite non-convergence.
The query node identification and merging is the process that is repeated till convergence. We found that
the algorithm typically converged in 5–6 iterations.

Let’s call the set of connected components G with elements g, which itself is a set containing the documents
within each component. We now form the query/intent-cluster graph. For each query q, the edge weight to
intent cluster gi is the fraction of clicks from that query that point to node gi. This weight has a natural
Markovian interpretation. For purposes of semantic interpret-ability, we label each node with the query
that has the highest edge weight pointing to that node. We call this the intent query. Traversing the graph
following the Markov weights reveals related intent, an approach that has been shown to be useful on the
raw query-document graph to find related queries [4].

4.2 Evaluation of clusters

Our goal in this section is to get a sense to what extent do the intent queries reasonably capture the intent
of the user. To do so, for each threshold setting we form a 100-query test set by randomly selecting 10 from
each decile of the search frequency (the same queries are used for each setting). We then follow all the edges
in the knowledge graph to get all the intent queries (clusters) that map to this query. Note that we follow
all edges, even if the Markov weight is very low.

An independent auditor, blinded to the parameter settings or aims of the study, evaluated query/intent-
query pairs. Pairs were scored a 1 if the intent query would could reasonably match the underlying query.
The auditor used the appropriate references for queries she was not familiar with. For example, for the
query “Aretha Franklin” there is a link to “Luther Vandross” intent cluster. The auditor scored this as a



9

ALGORITHM 1: Find connected components

SetOfURLWithCluster =
SELECT LeftUrlId AS UrlId,

RowLabel AS ClusterId
FROM SetOfURLPairs
UNION
SELECT RightUrlId AS UrlId,

RowLabel AS ClusterId
FROM SetOfURLPairs;

for 1 TO MaxIterationLimit do
SELECT UrlId AS LinkUrl,

MIN(ClusterId) AS MasterCluster
FROM SetOfURLWithCluster
FOR EVERY LinkUrl;

SlaveClusters =
SELECT ClusterId AS SlaveCluster,

MIN(UrlId) AS LinkUrl
FROM SetOfURLWithCluster
FOR EVERY SlaveCluster;

SetOfClusterRenames =
SELECT MasterCluster, SlaveCluster
FROM MasterClusters
INNER JOIN SlaveClusters
ON LinkUrl
WHERE MasterCluster <> SlaveCluster;

if SetOfClusterRenames.size = 0 then
end for

end if

SetOfURLWithCluster =
SELECT UrlId RenameIfExist(ClusterId, SetOfClusterRenames) AS ClusterId
FROM SetOfURLWithCluster;

end for



10

0, concluding that while the two entities are certainly related—they are both singers of a similar style from
a similar era—that the query “Aretha Franklin” does not reasonably have the intent to find material on
Luther Vandross. Clearly there is some genuine ambiguity at play in how to make this judgment. On the one
hand, some users may want to find material on Luther Vandross but are unable to remember his name. They
search a name they can remember, namely Aretha Franklin, and then click on a document in the Vandross
cluster. In this case, one might conclude that the judgment should be a 1. (In either case, these are clearly
terms that are usefully “related to” the underlying query.) To push back against this issue, we simply asked
our auditor to be conservative and consistent. Precision is defined as the fraction of pairs that are judged to
be relevant to each other by this standard. Weighted precision applies a weight to each pair as given by the
Markov weight connected the query to the intent cluster. This means that connections that had low strength
are down-weighted in the calculation.

The parameter setting 0.7 produced the most edges in the knowledge graph, which is natural since it
required the lowest threshold to establish similarity and thus the most non-singleton connected components.
We define each query/intent-query pair for the 0.70 that is scored as a true positive as the target set. The
fraction of pairs that each method recovers is defined as pseudo recall. By definition it is equal to 1.0 for the
0.7 parameter setting. We also define weighted recall, which applies the Markov weight to each pair. Note
that now the measure is not constrained to [0,1]. The reason is that the tighter thresholds tend to lead to
higher Markov weights, so if they can actually “recover more” (by getting credit for the weight) pairs. We
concede this metric is a bit unconventional, but find it nonetheless informative.

Table 3. Precision and Pseudo Recall by Threshold

Raw Weighted Pseudo W. Pseudo
Threshold Precision Precision Recall Recall

0.7 0.69 0.79 1 1
0.8 0.70 0.84 0.76 1.054
0.9 0.68 0.83 0.45 1.04
0.95 0.66 0.83 0.26 1.03

Table 3 gives the results. Raw precision is highest for the 0.8 threshold, coming in at 0.70, and actually
lowest for 0.95 (but the overall distances are not large). This indicates that the clusters in 0.95 can be too
specific and thus often don’t capture the broader intent of queries linked to them. Weighted precision is again
highest for the 0.8 setting, coming in at a healthy 0.84. As expected, raw pseudo recall falls as the threshold
tightens, but the weighted metric is far more stable. Again, threshold 0.8 scores the best on this metric.

Overall the metrics indicate that our unsupervised algorithm achieves results that are deemed quite
sensible when exposed to direct human judgment. The fact that raw accuracy was relatively stable, indicates
that optimal choice of parameter will probably depend on other features of the output, which we’ll now
investigate.

4.3 Linking queries to leverage scale

In Figure 7 we plot the cumulative distribution of the count of intent clusters per query. For this figure
and all the rest we plot all 4 threshold values. The first feature that is immediately apparent is that most
queries map to a single intent cluster. This is especially true for the 0.95 setting, which has the sparsest
knowledge graph. For all parameter settings, 90% of queries map to 2 or less intent clusters. That being said,
the distribution exhibits heavy tails. We have censored the x-axis at 10, but it extends well into the 100’s,
which can be seen in Figure 8. The log-log density plot shows the familiar linear patterns of a heavy tailed
distribution.

The number of intent clusters that a query maps to captures the diversity of intent for a given unit of
expression. What the data reveal is that while most queries seem to have a single intent (this also due to
the sparseness of the query-document graph, as previously mentioned), a non-negligible fraction have quite
diverse intent. Indeed, subsequent analysis reveals these more diverse intent queries tend to have higher
volume, in part because they are more generic (“Aretha Franklin” vs. “Aretha Franklin’s second album”).



11

Fig. 7. CDF of of the number intent clusters with an edge to a submitted query.

Fig. 8. PDF of of the number intent clusters with an edge to a submitted query, log-log scale.

Fig. 9. CDF of the number of queries per queries per intent cluster.



12

Fig. 10. Number of intent clusters per method.

One might wonder if the fact that most queries map to one intent query is a function of the fact that
intent clusters tend to contain very few documents and thus very few queries linking to them. In Figure 9
captures how many in-links intent clusters have. The CDF reveals that yes, there are many small clusters. As
expected, the 0.95 setting has the smallest clusters. However, for looser thresholds, most clusters have more
than 5 queries linking in, and approximately 20% have more than 20 underlying queries. This shows that
we have substantially reduced the sparsity of the query-document graph shown in Table 1. By reducing this
sparsity, learning via historical examples becomes a much more promising avenue to improve search engine
performance.

We have seen so far that the tighter the threshold, the fewer queries per cluster and fewer clusters per
query. In Figure 10 we show how the number of non-singleton set clusters formed changes with each parameter
setting. Examining the 0.7 setting, we see that there are roughly 120 million clusters. To put this number
in perspective, we saw that roughly 75% of all intent clusters mapped to a single query, meaning they were
a singleton set and excluded. The remaining set of queries, however, is quite large, 1.1 billion to be precise.
Of these 1.1 billion “unique” queries, we identify that the underlying unique intent is 10-fold smaller. This
is a substantial “reduction in uniqueness.” The other thresholds deflate uniqueness more aggressively, but
also leave more singleton sets, as shown in Figure 7. Given that human judged accuracy as similar across
thresholds, these results point to using 0.7 as the threshold.

To summarize the results, we see that the choice of threshold has a large impact on the resulting knowledge
graph. A smaller threshold allows more non-singleton intent clusters (connected components) to form in
the document similarity graph. At first this might seem counter-intuitive. Since clusters are identified by
connected components, adding more links could connect more existing components and reduce the number of
clusters. However, the countervailing force is that in a graph this sparse and that displays so much isolation,
adding links tends to form more clusters than it ties together. This highlights the role of scale in forming a
richer graph.

The 0.70 threshold setting is shown to identify approximately 118 million intent clusters from the nearly
1.1 billion “unique” queries that link to more than one document. Indeed these are the queries that have the
higher volume in terms of searches (almost by construction), so the “reduction of uniqueness” our method
offers in terms of search volume is greater still. Figure 11 shows the relationship between direct and indirect
volume (in log-log scale). We note that at low direct volume levels, indirect views are often two orders of
magnitude greater, highlighting the importance of these links. We conducted experiments that artificially
limited the scale of data we gave ourselves access to and saw the expected dramatic reductions in links within
the query-document graph.

4.4 Impact on CTR

We now link the number of “indirect examples” to CTR performance by repeating the “new query analysis”
using both direct historical examples and indirect historical examples (the queries linked in the graph) as
features. Our findings are summarized as follows:

yctr – Success-CTR vid – Indirect View Count vd – Direct View Count
yctr = α+ β1vid + β2vd



13

Fig. 11. Relationship between direct vs. indirect query counts

α = 0.742 [0.740, 0.745]
β1 = 2.251 10−05 [2.79 10−07, 4.48 10−05] i.e. 0.02% to 4.48 % per 1000
β2 = 1.109 10−05 [0.528 10−06, 1.69 10−05] i.e. 0.5% to 1.7% per 1000

We find both (direct and indirect views) are statistically significant predictors of CTR and higher click
positions on the page. For CTR, the coefficient on indirect views, conditional on direct views, is 0.000022,
indicating that 1,000 indirect views predicts a rise in CTR of 0.02, which is consistent with our previous
findings. Our previous finding was 1 to 3% and about 2%. This indicates that while direct examples are more
important, leveraging related queries is an important factor as well. Given that scale increases the density
of the query-document graph and thus the ability to find related queries, this points to another source of
advantage conferred to scale.

5 Discussion and Conclusion

It is well known that, like most statistical learning problems, efficiently designed search engines have errors
proportional to n−1/2, where n is the amount of data. As data accumulates, search engines should improve,
but how much does this scale economy matter? One perspective on competition among search engines is that
even a 1% share represents billions of searches per year. But the scale of the problem solved by modern search
engines has grown along with the data. Where AltaVista indexed millions of search pages, modern search
engines index billions of pages. So while modern search engines have more data than they did a decade ago,
they solve a harder problem than they did, making it entirely unclear whether the increase in scale makes
the problem easier or harder.

The frequency of unique queries does not actually measure how hard the problem is, unfortunately.
Consider the problem of “Pasadena Ethiopian Restaurant.” The first time this query was entered (as far
as we can tell), both search engines provided excellent results. Why? Because there are nearby queries;
essentially all portions – Ethiopian, Pasadena and Restaurant – are understandable based on past data, and
search engines can identify the relevant documents even though the query is rare. This spillover of knowledge
from one query to another means that the counts of queries is a flawed measure of the data advantage. We
apply an approach motived by past work that directly document these effects.

To address the complexity of the problem solved by search engines, we use two strategies. First, we look
at new queries. These are queries that have been rare and then become much more common. This lets us see
how the search engines respond to new data. We find that both search engines improve significantly as more
data flows in. While we illustrate that process quantitatively, there are two caveats. First, we see almost
all the data for one of the search engines and much less for the other. Thus, the scale of the measurement
varies across the two engines. Second, it could well be that there are other queries bringing relevant data to
the problem, because they help the search engine improve the matching not just for one query but for a set



14

of queries. Nevertheless, we do find substantial improvement on rare queries as more data flows in, which
demonstrates that both search engines are data starved in the sense that they benefit significantly from more
data on a substantial portion of the queries, perhaps as many as half the queries and 15% of the searches.

One potential objection to the approach we take is that perhaps the available results get better as more
people enter a specific query, because web pages specifically constructed to be clickable are created. We show
that this is unlikely—around 98% of the pages already existed—but more work could be done on this topic.
Indeed, the ecosystem effects of consumer search and gaming of search engines remain interesting topics
beyond the scope of this paper.

To address knowledge spillovers, where data from “Pasadena restaurant” helps a search engine with
“Pasadena Ethiopian Restaurant,” we constructed a knowledge graph. The knowledge graph identifies related
queries and lets us identify both direct (searches for that query) and indirect (searches for closely related
queries) data that can be brought to bear in finding the right answers to a query. One finding that suggests
that the knowledge graph was well-constructed is that we can predict the click through rate as a function of
both direct and indirect data, and find both are relevant, with similar coefficients.

The knowledge graph model confirms that data—both direct and indirect— matters at scale. Moreover,
and more interestingly, it lets us quantify how many queries have a modest amount of total data. We find
approximately 10% of the queries have less than 1000 relevant observations, and 18% have less than 10,000.
This addresses the question of how much data can actually be brought to bear on answering rare queries.

Search engines are arguably one of the most complicated engineering tasks ever attempted, matching
billions of queries to billions of web pages. While there are probably increasing returns to scale for small
amounts of data, there are eventually diminishing returns. Many markets are characterized by two major
search engines, with one larger than the other. What we observe in the North American market is that
both search engines are well into the region of diminishing returns, but there is still a significant return to
data. The effects we estimate are of modest size, 1-4 percentage points, meaning that a major algorithmic
improvement could swamp the advantage of a larger incumbent. That being said, it is well known that effects
of this size are large in terms of differentiating performance from a competitor and thus strongly suggest
that major search engines still operate in a region where more data matters.



Bibliography

[1] Baeza-Yates, R., Tiberi, A.: Extracting semantic relations from query logs. In: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 76–85. ACM
(2007)

[2] Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 407–416.
ACM (2000)

[3] Bordino, I., Castillo, C., Donato, D., Gionis, A.: Query similarity by projecting the query-flow graph.
In: Proceedings of the 33rd international ACM SIGIR conference on Research and development in
information retrieval. pp. 515–522. ACM (2010)

[4] Craswell, N., Szummer, M.: Random walks on the click graph. In: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information retrieval. pp. 239–
246. ACM (2007)

[5] Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias
models. In: Proceedings of the 2008 International Conference on Web Search and Data Mining. pp.
87–94. ACM (2008)

[6] Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary people with ex-
traordinary tastes. In: Proceedings of the third ACM international conference on Web search and data
mining. pp. 201–210. ACM (2010)

[7] Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs. In: Proceedings
of the 31st annual international ACM SIGIR conference on Research and development in information
retrieval. pp. 339–346. ACM (2008)

[8] Liu, X., Song, Y., Liu, S., Wang, H.: Automatic taxonomy construction from keywords. In: Proceedings
of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp.
1433–1441. ACM (2012)

[9] Sadikov, E., Madhavan, J., Wang, L., Halevy, A.: Clustering query refinements by user intent. In:
Proceedings of the 19th international conference on World wide web. pp. 841–850. ACM (2010)

[10] Wen, J.R., Nie, J.Y., Zhang, H.J.: Query clustering using user logs. ACM Transactions on Information
Systems 20(1), 59–81 (2002)


