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R. Preston McAfee

Philip Reny

Dept. of Economics
University of Western Ontario
London, Canada, N6A 5C2

- Professor A.K. Dewdney

Dept. of Computer Science
University of Western Ontario
London, Canada

April 21, 1988

Deér Professor Dewdney:

We enclose a description and plan for an analog multiplier, a
problem posed in your April, 1988 column in Scientific American.
We believe the geometry of multiplication described to be the
simplest possible (Figure 1). The engineering implementation of
this geometry is another matter. Unlike your solutions (except the
analog adder), our device exploits the three dimensional nature of
the world, and is not a 'flatland' solution. Nevertheless, we hope

you like it.

We also note that we designed several multipliers that
suffered from the fault that the output was not measured relative
to a fixed point in the plane, but instead relative to a rod that
moved in the computation, before we noticed that such output
could not be inputted to another machine without first shifting the
other machines as well — a particularly cumbersome solution. We
mention this since it was the error we didn't immediately observe,
and hence may also be a problem with other submissions.

This submission is our procedure for corresponding with
Sidney Afriat, who is an economic theorist as well.

//fﬂ

R. Preston McAfee

Philip Reny




ANALOG MULTIPLIER

- We provide the mathematical development first, and then a description of
the Aphraphulian device. The multiplier is based on the geometry of Figure
 1. The ndte on Fi‘gurg .1> pjpves the s'imple ge‘ometric relationship that res'ﬁilts :
in théré‘oxﬁputvat‘ionﬁof xy, fbi' inputé x.an.d> y. V Thé strategy is as félléws.
Begin with four rigid rods A,B,C, and D, configured as in Figurel 2a. . Pull rod
D up by the amount X, preserving the right angle with rod A (Figure 2b).
Now pivot rod B, holding its intersection With A fixed, so that the total
distance traveled along C is y (Figure 2c). The distance traveled along D is
Xy, by the argument in Figure 1.

It remains to implement this description with ropes and other building
materials. The rods are rigid: an example would be metal rods. We need two
kinds of sliding joints. The first, a universal joint, requires a swivel, and is
a circle attached to a half circle by a swivel (see Figures 3a and 3b). These
joints are remarkably similar to swivels used to let fishing lures spin, with a
bite out of one of the circles. This joint has the property that either rod can
slide relative to the other, and the angle at which they meet can vary.
However, the two rods can not leave the same "plane" (one is slightly above
the other). Thus, in particular, the movement in Figure 2c can be
accomplished, as rod B slides along rods C and D, with the angle they meet
at changing in the process, but remaining in the same plane.

The second joint needed allows one rod to slide along another while
preserving the right angle they meet at. Such a joint is depicted in Figure .
3c. This joint is siﬁilar.to a figure 8 with the bottom o rotated out of the
plane of the page.

Both types of joints have little o-rings attached to direct the path of

ropes, as necessary.




2

An illustration of the analog multiplier is given in Figure 4. Several
points are worth noting. The rods may be ordered by their distance from the
page - cqn_ﬂng oﬁt _of‘the pa’g_'e. :R_od Crlisv the closest to the page, with rod A
at thé same distance from the page (flush with the page will do). Rod B lies
 directly above that - to allow it to pass over rod C as rod B swings. Rod D
lies above that, as it must also pass over rod C, at least if x is allowed to
exceed unity. This is also the reason for the half circles on the swivels - so
that as x goes past unity, rod D can pass over rod C without the swivels
blocking the movement. The more sophisticated version on the machine has
four grooves in rod B and teeth in the ends of the half circles so that there
is no "play" in the connections, and no possibility of a rod coming out of the
plane parallel to the page. Second, weak springs have been placed on the
other ends of the x,v and z ropes, so that the system "zeroes" itself when
the tension on the x and y ropes is released. These springs must be weaker
than the tension of a pulled rope, perhaps % of the typical tension in the
system.

Note as well that the machine is also a divider - by pulling on the x
and z ropes, one receives the answer y=x/z on the y rope.

One last point is worth noting. If one fixes the value of y, the machine
is a scalar multiplier. Having fixed the value of y, if we now distort (bend)
the left vertical rod (rod A), one computes some function. The mapping
between the shape of the rod A and the function computed is quite

complicated, but this provides a strategy for computing a class of functions

with simple analog machines.
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