What is $\operatorname{Pr}\{Z \geq 20\}$?

by

R. Preston McAfee*

Abstract: A close approximation to the standard normal is given for large values.

* Department of Economics, University of Texas, Austin TX 78712.

It is not uncommon to find t statistics exceeding ten in some regressions. It turns out to be difficult to look up values for the probabilities in such cases. Here is an easy heuristic.

Theorem: For $z>0$,

$$
\frac{1}{\sqrt{2 \pi}} \frac{z}{z^{2}+1} e^{-z^{2} / 2} \leq \frac{1}{\sqrt{2 \pi}} \int_{z}^{\infty} e^{-x^{2} / 2} d x \leq \frac{1}{z \sqrt{2 p}} e^{-z^{2} / 2} \cdot 1
$$

Proof: Note that

$$
\begin{align*}
& \int_{z}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2} \mathrm{dx}=\int_{\mathrm{z}}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2} \mathrm{x} \frac{1}{\mathrm{x}} \mathrm{dx} 2 \\
& =-\left.\mathrm{e}^{-\mathrm{x}^{2} / 2} \frac{1}{\mathrm{x}}\right|_{\mathrm{z}} ^{\infty}-\int_{\mathrm{z}}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2} \mathrm{x}^{-2} \mathrm{dX} 3 \\
& \quad=\frac{1}{z} \mathrm{e}^{-\mathrm{z}^{2} / 2}-\int_{\mathrm{z}}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2} \mathrm{x}^{-2} \mathrm{dX} 4 \tag{1}\\
& \quad \geq \frac{1}{\mathrm{z}} \mathrm{e}^{-\mathrm{z}^{2} / 2}-\mathrm{z}^{-2} \int_{\mathrm{z}}^{\infty} \mathrm{e}^{-\mathrm{x}^{2} / 2} \mathrm{dX} \cdot 5 \tag{2}
\end{align*}
$$

The right inequality in the Theorem follows from (1), while the left follows from (2).
Remark 1: For values of z exceeding 10, either bound represents an error of at most 1% of the actual value.

Remark 2: Note that $\boldsymbol{e}^{x}=10^{x / \ln 10} \approx 10^{0.4343 x}$. Therefore,

$$
\operatorname{Pr}\{Z \geq z\} \approx \frac{0.3989}{t} 10^{-0.21715 t^{2}}, 6
$$

and,

$$
\operatorname{Pr}\{Z \geq 20\} \approx 0 . \frac{3989}{20}-10^{-86.86}=2.753-10^{-89} \cdot 7
$$

Writing this as one chance in n, n exceeds the estimates for the number of electrons in the universe by 10,000 times.

