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Abstract Internet advertising exchanges possess three characteristics—fast delivery,
low values, and automated systems—that influence market design. Automated learn-
ing systems induce the winner’s curse when several pricing types compete. Bidders
frequently compete with different data, which induces randomization in equilibrium.
Machine learning causes the value of information to leak across participants. Discrim-
ination may be used to induce efficient exploration, although publishers (websites)
may balk at participating. The creation of “learning accounts,” which divorce pay-
ments from receipts, may be used to internalize learning externalities. Under some
learning mechanisms the learning account eventually shows a surplus. The solution is
illustrated computationally.

Keywords Auctions · Winner’s curse · Machine learning · Display advertising ·
Internet advertising

The tools of market design—economics practiced as an engineering discipline—have
seen widespread deployment in the past two decades. A diverse set of applications
include spectrum auctions, physicians’ residencies, search keyword auctions, elec-
tricity auctions, secondary school placement, kidney exchange, and the sale of natural
resources like mineral rights.1 The total value of resources that have been directed
using principles of market design has probably topped US$200B at this point in time.

Display advertising—graphical advertisements on web pages—is primarily sold
through contracts negotiated by humans. Increasingly, however, advertisements are

1 See Abdulkadiroglu et al. (2005), Edelman et al. (2007), McAfee et al. (2010a), McMillan (1994),
Milgrom (2000), Roth et al. (2005), Roth (2010), Tietenberg (2010), Varian (2007), and Wilson (2002).
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170 R. P. McAfee

run through exchanges, including Yahoo!’s Right Media Exchange (RMX), Google’s
Double-Click Exchange, and Microsoft’s AD-ECN exchange. The design of these
exchanges presents a remarkable set of challenges and interesting solutions. Some of
the lessons that have been learned, especially regarding externalities in learning, are
likely to be relevant in other settings, especially as the technological sophistication of
exchanges grows. Many of the problems that are described herein also apply to the
problem of sponsored search: advertising on search pages. A major distinction between
the exchange environment and the search environment is that the search environment
has a single publisher (seller) of advertising that represents most of the supply.

Every application of market design involves a setting with unique, salient features.
Failures in balancing supply and demand in electricity markets either create trans-
former explosions or damage appliances; such extreme constraints limit the scope
of market mechanisms. Lack of social acceptability prevents the pricing of human
kidneys. In advertising auctions, three major features are: (i) the speed at which the
auctions must be accomplished; (ii) the miniscule value and high volume of the items
that are being traded; and (iii) the need to use automated systems for bidding, evalua-
tion, and execution of the trades.

The speed of display advertising auctions is breath-taking. After a user clicks on
a link and a new page starts to load, the new page itself calls for an advertisement,
known as an impression. That call for an advertisement spawns a call to an exchange
to supply the advertisement. The exchange then holds an auction for the right to show
that particular user an ad. The auction is run, the advertisement selected, pulled from
a database, and then sent to the page, all in a fraction of a second. Speed is of the
essence, because slowly loading pages create a bad user experience. Moreover, many
pages won’t load the content until the ad loads, so that the user is left hanging until
the ad is delivered.

In the sale of spectrum licenses, individual licenses often sell for hundreds of mil-
lions of dollars. Consequently, an enormous amount of thought goes into the behavior
of participants: Humans do the bidding; sophisticated software is built to aid the bid-
ders; the auction can do complex things; and the auction may drag on for weeks. The
process involves a high degree of deliberation.

Display ad auctions represent the opposite end of the deliberation spectrum. Not
only is there no time to do complex things, the items are individually worth very
little—usually less than a penny. Prices are sufficiently low that they are quoted in
price per thousand, and suppliers of all but the most valuable audiences (e.g., medical
and finance) would view $5 as a good price for a thousand impressions. In contrast to
the old joke, however, a seller of advertising impressions can make it up in volume:
The major exchanges trade billions of impressions per day.

The third characteristic of display advertising is the use of automated systems.
Automated systems are needed not just because of the speed of the auctions—a human
wouldn’t be able to bid in a fraction of a second—but also because of the complex
nature of the item that is being sold. The complexity arises because of the varied needs
of advertisers. Some advertisers target demographics: age, gender, ethnicity, income,
family status. Almost all have relevant geographic markets, ranging from a few nine-
digit zip codes to a continent. Many advertisers target consumer interests such as
sports cars, skiing, or Swiss cooking; and there are at least 5,000 distinct targeting
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Exchange Design 171

variables. Further complicating matters are dozens of standard ad sizes. There may be
restrictions put on the ads, such as no moving images, no skin except hands and face,
or color limitations.

For major advertisers, such restrictions create trillions of ad types, which could sell
for different prices: e.g., a 200×300 pixel flash ad, shown to a 40–45 year old woman
residing in Cambridge, MA, married, young children, family income $50–75K, inter-
ested in fashion, family cars, cross-country skiing, and books, currently visiting a
news page about politics, appearing on Valentine’s day. Changing any one of those
descriptors in principle might change the value to some of the advertisers, and hence
the market price of the advertisement. Moreover, characteristics of the page and user
are not the only relevant considerations: Advertisers have actually sought to advertise
only in cities where the sun was currently shining, or only on days where the stock
market was up over the previous close.

Given the complexity of the goods being sold, auctions are a natural way to trans-
act. Advertisers can place bids for the types of target opportunities that they seek,
and whoever values the opportunity the most will win. Certainly real-time auctions
maximize the potential advertiser value and will tend to be more efficient than other
transaction mechanisms. Auctions in this environment, with their fire hose speeds and
volumes, present a variety of challenges, and the solutions to these challenges will
likely prove useful as machine learning permeates exchanges.

Section 1 describes a problem related to the winner’s curse, which arises when
several pricing types compete in an auction. Section 2 explores the effects of bidders
with different data about a common value and shows that randomization is part of
the equilibrium. Section 3 provides an overview of machine learning: in particular,
how learning about some items naturally spills over to other, related, items. Section 4
explores the effects of the externalities that are created by machine learning; when
there is only one publisher or website owner, discrimination in the auction can be used
to induce efficient learning. Section 5 considers the case where there are many publish-
ers and advertisers, and proposes a general solution for internalizing the externalities.
Section 6 illustrates the solution computationally. Section 7 concludes.

1 The Machine Learner’s Curse

Advertisers may prefer to pay by the impression, or only when a click on the ad occurs,
or when some action, like a sale, occurs. These are referred to as CPM, CPC, and CPA,
for cost per impression, cost per click, and cost per action pricing, respectively. In some
exchanges, and in Right Media in particular, all of these pricing tactics may co-exist
simultaneously, with some advertisers bidding CPM and others CPC. (The analysis
of CPC here applies to CPA as well.) When both CPM and CPC pricing tactics arise,
the natural strategy is to estimate the probability of a click, and then compare the cost
per impression with the expected cost per impression for the CPC campaign: specif-
ically, the bid price per click times the probability of a click. This product is known
as eCPM, for expected CPM. The strategy of choosing the highest value of eCPM is
flawed, however, through our old friend: the winner’s curse (Wilson 1969).
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172 R. P. McAfee

In a standard auction context, the winner’s curse states that the bidder who over-
estimates the value of an item is more likely to win the bidding, and thus that the
winner will typically be a bidder who over-estimated the value of the item, even if
every bidder estimates in an unbiased fashion. The winner’s curse arises because the
auction selects in a biased manner, favoring high estimates. Savvy bidders adjust their
bids in response.

In the advertising setting, however, a second form of winner’s curse may arise even
when advertisers’ bids reflect value. Standard auctions will favor bidders whose click
probability is over-estimated, even if the click probability was estimated in an unbi-
ased fashion. Consider having estimates of the click probabilities for two CPC ads
with similar true (but unknown) click probabilities. Typically one of the ads will be
overestimated, by an amount proportional to its standard deviation of the estimate.
Since the true click probabilities were similar, the overestimate will be selected as
the best CPC ad, and its true click probability will be less than the estimated click
probability. Generally, higher variance ads will have a larger overestimate, and a CPM
ad—which doesn’t require an estimate of the click probability—is the equivalent of a
zero variance CPC ad. Thus, an unbiased prediction method will systematically favor
the higher variance estimates, and the realized revenue from the campaigns will be
less than the expected revenue.2 This form of winner’s curse—on the auction selection
mechanism—is independent of the standard winner’s curse that operates through the
selection of bids.

As with the winner’s curse, there is a simple fix for this problem: The exchange must
adjust the estimated click probability to account for the expected bias. This adjustment
requires little beyond the standard deviation of the estimate. In a binomial world, such
an estimate is straightforward. However, the simple binomial isn’t appropriate in a
machine learning environment, for reasons that we explore in Sect. 3. Moreover, the
option value of learning is a separate consideration from the winner’s curse, and is
one that suggests favoring risky payoffs.

2 Cherry-Picking, Data, and Randomization

The plethora of targeting criteria that are available in advertising exchanges presents
a challenge for bidders. A bidder who wants to reach interested car buyers might
advertise on auto pages. Some visitors to auto pages are clearly better than others. For
example, visitors under 17 years of age rarely buy automobiles. Different advertisers
have distinct databases; indeed there is a thriving business in the sale of data about
customers to advertisers, with hundreds of suppliers. As a consequence, advertisers
typically compete in auctions with other advertisers who have different data about the
customers.

Advertisers generally have access to three kinds of information about the oppor-
tunity to advertise. First, advertisers may have advertised to the user previously and
written a “cookie” on the user’s computer. A cookie is a small text file that, in principle,
is accessible only by the party that created the file. The contents of this cookie can

2 This discussion is based on Bax et al. (2011), which also provides a practical solution.
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be accessed by the advertiser to form a bid. Second, advertisers may have access to
common information, such as the website that the user is currently visiting and the
user’s IP address. IP addresses frequently provide the user’s geographic location, often
within a kilometer. Since IP addresses are relatively stable, the IP address may be used
as an index, and information about the user is recorded by the advertiser. That is, the
advertiser can record all the previous pages in which it encountered that IP address,
from which it is often possible to infer characteristics about the user. The current
website usually provides a referrer (the previous page visited). Third, access to the
information in the first two types of information can be purchased from third parties.

Competing with bidders with superior information is fraught with challenges. One
challenge on which I wish to focus is colloquially known as cherry-picking or cream-
skimming, a type of adverse selection, which here entails a rival’s bidding high on
a high quality subset of another firm’s target audience. Because there are trillions of
categories of advertising opportunities, any bid will encompass hundreds of billions
of categories, and it may be possible for rivals to identify subsets that are relatively
high value and attempt to acquire these subsets via higher bids. For example, the
credit-rating bureaus sell data on creditworthiness, and such data can be used to iden-
tify more likely prospects for major purchases like cars and vacations. Suppose that an
advertiser bids $5 per thousand to advertise on a travel site, earning a reasonable rate
of return. A rival may start bidding $6 for creditworthy individuals, thereby extracting
most of the credit-worthy individuals and rendering the original $5 bid unprofitable
because, say, the remaining impressions were of lower value. If the bidders have similar
values for the advertising opportunities, data purchases are socially wasteful.

Such cherry-picking drives bidders to increasingly refined bidding strategies, result-
ing ultimately in “real-time bidding,” where potentially every opportunity gets a dis-
tinct bid that is computed on the fly. Cherry-picking is potentially destructive, however,
because it forces bidders to follow strategies that are costly, both in data costs and in
computational effort; this is a familiar concept from the economic literature on sorting
costs: selling in imperfectly sorted packages (Kenney and Klein 1983) to reduce the
costs of sorting.

There is an alternative strategy for the bidders that tends to limit the destructive
force of cherry-picking: randomization. Rather than bid a fixed level, an advertiser
might randomize the bid submitted. Randomization limits the return to the (better-
informed, but not perfectly informed) cherry-picker, who only wins a portion of the
inventory, and preserves some of the return of the randomizer. Randomization in adver-
tising exchanges is analogous to the use of randomization in the stock market in the
presence of insider trading (Manne 1966).

Let me illustrate the concept with a simple model. There are n ≥ 2 potential bid-
ders in a common-value, second-price auction. Bidders have data on an opportunity
with probability α, 0 < α < 1. The data provide a signal about the value of the
opportunity. For simplicity I assume that the actual value is revealed by the signal, and
that it is a common value that is drawn from a cumulative distribution function G.3

3 Revealing the actual value appears inessential; the key element of the theory is that the uninformed bid-
ders will typically make losses against informed bidders, and there is a positive probability that no bidder
is informed.
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As a consequence of second pricing, bidders who are informed bid the actual value.
Bidders who are not informed will usually choose to bid something. To see why, sup-
pose the uninformed bidders chose not to bid. A bid of a penny would win the item at a
price of 0 when all the bidders were uninformed, and would otherwise almost always
lose. Bidding a small amount produces approximately the mean value, with probability
(1 − α)n−1. This logic shows that uninformed bidders must bid in equilibrium.4

Suppose the uninformed use the bidding distribution F , which may have point
masses. Consider an uninformed bidder—say, bidder 1—who bids b. If at least one
bidder is informed, bidder 1 wins only if the value is less than b. This means that if
any bidder is informed, bidder 1 makes a negative expected profit. If k bidders are
informed, the cumulative distribution of the maximum of bids by bidders 2, . . . , n is

θk(x) =
{

F(x)n−1 i f k = 0
G(x)F(x)n−1−k i f k ≥ 1

.

The function θk gives the distribution of the highest bid of rivals. From θk , we have
the probability of winning, θk(b), as a function of the bid b, as well as the expected
price conditional on winning, 1/θk(b)

∫ b
0 xθ ′

k(x)dx = b − 1/θk(b)
∫ b

0 θk(x)dx , for
any given value of k.

Let μ = ∫ ∞
0 vg(v)dv be the average common-value. Bidder 1 earns

π(b) = (1 − α)n−1

⎛
⎝μF(b)n−1 −

b∫
0

xd F(x)n−1

⎞
⎠ +

n−1∑
k=1

(
n − 1

k

)
αk(1 − α)n−1−k

×
⎛
⎝

b∫
0

vg(v)dvF(b)n−1−k−
b∫

0

xdG(x)F(x)n−1−k

⎞
⎠.

With probability (1−α)n−1, all the rivals are uninformed. Bidder 1 wins with prob-
ability F(b)n−1, obtaining the average value and paying the price that is the highest
bid from n −1 independent draws from F . In contrast, there are k ≥ 1 informed rivals

with probability

(
n − 1

k

)
αk(1 − α)n−1−k , and in this case all k rivals bid the true

value. Thus 1 wins only when the true value is less than b, and the other n − 1 − k
uninformed bidders bid less than b as well. This gives a value that is the expected
value, and a price that is a draw from θk , subject to its being less than b.

The distribution F represents an equilibrium bidding distribution if any bid getting
positive weight by F maximizes π . The lowest bid in the support must give zero profits,
because if it gave strictly positive profits, a bidder would be better off bidding slightly

4 This model is distinguished from Abraham et al. (2011), which precedes this work, primarily by my
assumption that more than one bidder may be informed. This assumption allows independence, which
simplifies the analysis. Several informed bidders is sensible in the advertising context, but not in Hendricks
and Porter (1988) analysis of off-shore oil auctions, which analyzed first-price auctions with one informed
bidder.
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more to resolve ties in her favor. Consequently, in any equilibrium, bids in the support
of F produce zero profits, and no bids produce positive profits for uninformed bidders.

If the support of the distribution F has a non-empty interior, π ′(b) = 0 for all b in
the interior of the support. In “Appendix”, I show that π ′(b) = 0 implies

(
(1 − α)F(b)

α + (1 − α)F(b)

)n−2

=
∫ b

0 G(v)dv∫ ∞
b 1 − G(v)dv

. (1)

For n > 2, the left-hand side is increasing in b and ranges from 0 to (1 − α)n−2

as b ranges from 0 to the top of the support. The right-hand side is increasing in b and
ranges from 0 to 1 as b ranges from 0 to the mean μ of G.5 Consequently the unin-
formed bidders never bid more than the mean value, which is intuitive, since nothing
suggests that the value exceeds the average. Provided that G is strictly increasing and
n > 2, an equilibrium bidding function F is strictly increasing and unique. Moreover
F increases, meaning bids fall, in both the probability of being informed, α, and the
number of participants, n.

When n = 2, the competition to bidder 1 is either informed, in which case prof-
its are exactly zero, or uninformed. Profits are zero when facing an informed ri-
val, because that bidder bids the true value; if the uninformed bidder wins against
an informed rival, the price is the true value. Therefore, since profits average zero,
profits must also be zero when the uninformed bidder faces an uninformed bidder.
This situation collapses to Bertrand competition, and the uninformed bidders bid the
mean μ. For n > 2, however, there is a non-degenerate distribution of bids: the solution
to (1).

If there are a large number of bidders, and we assume that the expected number of
informed bidders αn ≈ A is held constant, then

∫ b
0 G(v)dv∫ ∞

b 1 − G(v)dv
=

(
1 − A/n

A/n + (1 − A/n) F(b)

)n−2

≈ e− A
F(b) ,

which gives a sharp, if somewhat unusual, closed form for the bidding distribution.

When G is U[0,1],
∫ b

0 G(v)dv∫ ∞
b 1−G(v)dv

=( b
1−b

)2, and thus, F(b)= α
1−α

( b2/n−2

(1−b)2/n−2−b2/n−2

)
.

Uninformed bidders will generally randomize their bids in response to the pos-
sibility of rivals with superior data. Randomization protects against cherry-picking
by informed bidders, even perfectly informed bidders, by limiting the effects of the
cherry-picking strategy. When a better-informed (but not perfectly informed) agent
bids somewhat higher on a high-value subset of the inventory, it only wins a portion
of that inventory rather than the entire subset. Yahoo! has implemented technology
to share competing demands of high-value advertising campaigns using randomized
bids along the lines described here, insuring that bidders who set broad targeting cri-
teria receive a broad mixture of inventory types. In particular, randomized bids insure

5 The value at b = μ can be derived from the expression μ = ∫ ∞
0 1 − G(x)dx .
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that campaigns win some inventory that would have commanded a high price in the
exchange. The method is discussed in McAfee et al. (2010b).

I now turn to the incorporation of machine learning into the prediction of actions
in exchanges.

3 A Sidebar on Machine Learning

Recent advances in machine learning are impressive indeed. We depend on them when
we search the web to produce an appropriate list of relevant documents out of a popu-
lation of hundreds of billions of documents. Just how impressive machine learning is
can be seen from a market statistic concerning unique searches. When a user searches
for an item, say “Windows XP error 1706,” all search engines standardize the query.
Standardization involves removing some punctuation and capitalization, eliminating
the plural on some terms, correcting spelling mistakes, and other adjustments to make
it more likely for queries to be comparable. Even with standardization, the majority of
queries, representing more than 10% of searches, searched in a month occur only once.
Thus, there is very little direct data on user behavior concerning most of the queries!

In spite of the absence of data, search usually works pretty well. Even if a query like
“Windows XP error 1706” had never occurred before, there have been lots of “Win-
dows XP error” queries. Through various means (page rank, text matching, historical
clicks), the domain microsoft.com came to rank highly for these nearby queries, and
thus is favored over other sites that might have “error 1706” on them. Approximately
speaking, a query that is “near” others will be matched to sites that work for the
neighbors. Machine learning exploits similarity to perform well even when exactly
matching data are lacking.

Machine learning works well overall, but text matching is not perfect. Slight dif-
ferences in text may produce dramatic differences in meaning. For example, the auto-
correct feature of iPhone text entry produces often hilarious changes.6

As a consequence of the structure of machine learning, it is often very difficult to
estimate the actual variance with which a prediction is made. Thousands of behaviors
across thousands of related terms, with an unknown matching strength or correlation,
go into click probability estimation, and it is often not possible with current technology
to estimate accurately the variance of the estimates. As a result, the commonly assumed
environment in economics modeling of a known mean and variance is implausible in
some machine learning settings. Moreover, it is even more difficult to assign “credit”
to past learning for present accuracy. Thus, it appears impossible to quantify the value
that is created by some event in making better future decisions.

4 Externalities from Machine Learning: The Value of Learning

As described above, information from one action spills over to others; for example,
if we see a high click rate on Ford ads placed on Car & Driver magazine pages, the
system will learn, thanks to common features, that Toyota ads are also likely to work

6 See http://damnyouautocorrect.com/.
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well on Road & Track pages. This is a classic externality, and is most extreme with
“new” ads, particularly ads with new, never-before-seen features. The early experience
of these ads on a variety of pages offers future benefits for other exchange participants,
primarily through learning how the new features interact with old features.

If one side of the market is represented by a single player, as in keyword (paid
search) auctions, a simple solution is to price the externality.7 Write the value from
running advertisement i in the form

Bi = eCPMi + VOLi , (2)

which represents the immediate expected value, eCPM, plus a mnemonically named
value of learning term, which is the increased system or social future value from the
better knowledge that is gained by running advertisement i now. Equation (2) rep-
resents a standard Bellman equation, which is familiar from dynamic programming
(Luenberger 1979), which breaks the optimization problem into a current value and a
future value. Unlike the Bellman equation, however, the VOL term does not represent
the value of the future but the change in the value of the future that is associated with
running the ad now, against, say, no ad. The magnitude of the future value depends on
uncertainty about the actual performance of advertisement i . If the value of running
ad i were known with certainty, there would be no future value of running ad i now.

With a single party on one side of the exchange, a natural solution to the problem
of externalities is to run a second-price auction using values transformed by (2). This
is done by ranking the ads from highest to lowest according to the value of Bi , then
charging the advertiser with the highest B, say 1, an eCPM price that just equates the
highest B to the second highest B; specifically the price is given by

p = eCPM2 + VOL2 − VOL1. (3)

Equation (3) gives the lowest value that 1 can bid, in eCPM terms, and still win over 2.8

Provided that the bidders cannot influence the VOL terms, the discrimination that is
implicit in pricing via eCPM2+VOL2−VOL1 is incentive compatible; bidders will bid
their value, because the price paid is independent of their bid, and the system-efficient
advertisement is selected. Using the value of learning as part of the optimization has
the direct effect of making the system more efficient, thus choosing advertisements
more effectively. However, it is theoretically possible that revenue may fall, because
the highest immediate value isn’t selected.

There are two distinct reasons why revenue should rise: First, ads are selected more
efficiently, so the overall value of running ads rises. This is not sufficient, however, to
conclude that the value that is extracted by the publisher rises. Over a reasonably long
time, the value that is extracted by the publisher must rise, because of a second reason:
If both eCPM and VOL are high for a given ad, that ad will run, which decreases VOL as

7 This approach is taken from Li et al. (2010).
8 For this analysis, it does not matter if payment is made per click or per impression. If payment is made
per click, the per click price is just the eCPM calculated in (3) divided by the click probability. Of course,
the earlier discussion of the winner’s curse still applies.
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learning occurs. Consequently, it will eventually be the case that if eCPM1 > eCPM2,
then VOL1 ≤ VOL2. Thus, the net adjustment for the winning bidder, VOL2 −VOL1,
will tend to be a surcharge to bidder 1 for not running ad number 2, about which less
is known.9

A single party matters because that party can expect to capture most of the benefits
of learning in the future. The search environment approximates the single party case; a
variety of advertisers deal with a single publisher (the search engine), and the publisher
can reasonably anticipate that following a sensible learning algorithm will more than
pay in the future for any current foregone revenue. In contrast, with many publishers,
the benefits of learning often will not accrue to the party that pays the costs.

5 Externalities from Machine Learning: The Learning Account

A single party on one side of the market matters, because that party can be expected to
capture much of the gains from using a forward-looking approach to selecting adver-
tisements. In contrast, in the advertising exchange setting, there are many publishers
and advertisers. In many instances it may be optimal from the system or social per-
spective to select a low eCPM advertisement because the value of learning is high, but
in this case revenue is low, so the publisher will not benefit and will be dis-inclined to
accept such advertisements. Learning involves positive externalities, and publishers
may be loath to subsidize other parties by accepting low prices for future learning.

Moreover, any reasonable exchange must give the publisher controls that would
allow it to avoid new advertisements. Publishers bear a cost from offensive ads; adver-
tisements for home automation (“popunders”), weight loss, dental, and dizzying refi-
nancing lead the list. But offensiveness is context-dependent. Semi-pornographic ads
are acceptable only in some circumstances; oil company ads may be offensive on
environmental pages. Publishers have a valid reason to want to control the types of
advertisements that run on their pages. Such control, however, may be used to prevent
low eCPM, high VOL ads from running.

Furthermore, it is not at all clear why a publisher should be asked to accept low
eCPM advertisements, even if this were feasible. The point of running such adver-
tisements is to create a benefit for the system as a whole; imposing the social cost on
a single publisher who happens to be available violates the principle that the parties
receiving the benefits should pay the costs. This problem of accepting low eCPM ads
is potentially extreme, as the price given by (3) can easily be negative. While neg-
ative prices can readily be prevented with reserve prices, the possibility of negative
prices illustrates the unreasonable nature of imposing the entire impact of the value of
learning on the present publisher.

A possible solution to the problem of externalities induced by machine learning is
to separate the payments made by advertisers from the payments made to publishers.
Specifically, we charge advertisers based on (3): the second-price for the social benefit

9 The description here suppresses the most important contribution of Li et al. (2010), which is to produce
a practical mechanism by approximating the VOL terms, and then testing using an experiment with live
Yahoo! search traffic.
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of running the advertisement. However, the payment made to publishers is the second
highest value of eCPM. This payment system requires a learning account, operated by
the mechanism, so that payments made and revenue collected can be different. The
main question is whether the learning account runs a deficit or not; if the learning
account runs a surplus, the solution to the problem of externalities is feasible without
external subsidies.

The second highest value of the eCPM will not always come from the same adver-
tiser as the second highest value of the social benefit B. For example, suppose advertiser
1 has an eCPM of 1 and VOL of 10, advertiser 2 has an eCPM of 1 and VOL of 5, and
advertisers 3 and 4 both have eCPM equal to 2 and VOL equaling 0. In this case, the
second highest eCPM is 2, associated with either advertiser 3 or 4, while the second
highest advertiser payment arises with advertiser 2, and produces a second-price of
1 + 5 − 10 = −4, as given by (3).

Why are publishers and advertisers not treated symmetrically? The answer is that
the appearance of a publisher is exogenous, while the appearance of an advertiser is
not. That is, the publisher appears to the system, asking for an impression, and the
system assigns the advertiser. Thus, efficient learning entails selecting the right adver-
tisement for a given publisher, not in generating the right publisher/advertiser pairs,
because the system cannot control which publishers become available at any given
moment.

Divorcing the advertiser and publisher payments makes economic sense, because
the value of learning involves a future value. Moreover, it appears to be impossible
to trace the value of any specific bit of learning, because the use of knowledge is so
diffuse, and depends so heavily on the hypothetical of what would have transpired
had some different ad been run. In contrast, it is quite easy to establish what payment
would have been made to the publisher, absent any VOL considerations, and just pay
the publisher that amount. The incentive effects of such a system are good: Publishers
get the immediate second-price; advertisers are selected to maximize social welfare;
and the advertisers’ bids reflect their actual value.

The only question, then, is whether the learning account requires a subsidy. If the
system at least breaks even, the mechanism is sustainable. Unfortunately, the need
for a subsidy appears dependent on the exact method of learning employed. There are
reasons to be both optimistic and pessimistic about the eventual surplus in the learning
account. On the pessimistic side, we have a system with private information on the
part of advertisers; efficiency in the one-shot mechanism is possible but may have no
slack: The mechanism assigns all of the gains from trade to the advertisers, and the
publishers break even. This lack of slack may mean that efficiency requires getting
the solution exactly right. On the optimism side, there are welfare gains from efficient
assignment that should generate net revenues. Moreover, the single publisher analysis
suggests that eventually the learning account produces positive net revenue profits for
the system: Eventually VOL2 − VOL1 > 0.

For some machine learning algorithms, the mechanism produces positive prof-
its. In particular, for upper confidence bound (UCB) learning with zero discounting,
the mechanism makes a positive profit for sufficiently large durations and negligible
discounting.

123

Author's personal copy



180 R. P. McAfee

UCB learning entails fixing a constant k, estimating the standard deviation for each
ad i (σi ), and running the ad with the highest value of eCPMi + kσi . One can think
of UCB learning as approximating the value of learning by the parameter k times the
standard deviation. In practice, UCB entails picking one ad, say 1, to run for a while,
which yields learning about that ad, so that its standard deviation falls10 until such
point that eCPM1 + kσ1 = eCPM2 + kσ2. At this point, UCB alternates between 1
and 2, keeping the value of eCPMi +kσi approximately equal. Note that eCPM is con-
tinually updated during this learning. The value of eCPMi + kσi tends to fall because
eCPMi , while random, tends to the true value, and σi tends down to zero. At some
point eCPM1 + kσ1 and eCPM2 + kσ2 may fall to the level of eCPM3 + kσ3, at which
point ad 3 is brought into the rotation. Bad outcomes about one of the advertisements
may cause it to fall out of the rotation.

This process continues until a winning ad is identified and its variance is approxi-
mately zero. At that point, the winning ad runs nearly 100% of the time, even though
it remains tied with eCPMi + kσi for other ads in the rotation, whose frequency
diminishes.

Under UCB learning, then, VOL terms are negatively correlated to eCPM for all ads
that are run; indeed, they approximately sum to a constant. Thus, the only systematic
losses that are sustained by the system occur in the initial phase when there is a leader,
which, if there are T periods, turns out to be less than a constant times

√
T ; this is a

vanishingly small fraction of the total time.11

Thus, at least for one popular learning technology—a mechanism that charges
advertisers to induce efficient learning, but pays publishers based on the one-shot
value of their impression—makes a profit. UCB has some attractive properties but is
generally flawed in the advertising context because it doesn’t handle features well,
and feature-based learning mechanisms are critical to matching ads and opportunities.

6 Illustration of UCB

Consider four advertisers, with eCPM values of 0.35, 0.37, 0.39, and 0.41. These
eCPM values are modeled as click-rates, with equal values conditional on a click, so
that the eCPM is the true probability of a Bernoulli random variable, the payoff from
running the ad. We estimate the click-rates by running each ad twenty times, as an
initialization. The estimate of the standard deviation is set at 1/2 divided by the square
root of the number of times that the ad has run, which is appropriate for a binomial
random variable. UCB suggests picking the ad with the highest estimated click-rate
plus a constant times the standard deviation; the constant was set at 2.12

10 In the constant eCPM case, the standard deviation is approximately a constant over the square root of the
number of times that the ad is run. Alternately, the estimated standard deviation can be a weighted average
of recent variation.
11 John Langford developed this insight about UCB. The argument depends on there being a clear best ad;
if there is an eCPM tie, the argument for a net surplus becomes a zero net surplus, which means long-run
losses are possible since the future revenues are expected to be zero, and therefore insufficient to cover
early losses.
12 This constant is sufficient to insure that every ad is trialed, since the upper bound on eCPM is 1 and the
initial value of kσ is 1.
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Fig. 1 UCB values

A sample run is presented in Fig. 1. The number of trials is on the horizontal axis,
with the UCB values on the vertical axis. The best ad is graphed in a solid black line,
while the others are graphed in gray. Note that the ads have similar values of UCB
and thus all four ads are in the rotation, although a gray ad has quite a temporary
advantage around the 1,000th period. Even after 10,000 periods, the system has not
yet converged. Indeed, black, which is the highest payoff, is not run for a substantial
interval around period 9,000, owing to a relatively high showing by another ad.

The state of learning—the estimate of eCPM—is presented in Fig. 2. The aver-
age click rates become quite close to the true values. Flat spots in this graph indicate
extended periods where the advertisement is not running because its UCB is not
highest.

The state of the learning account, the cumulative value expressed as a proportion of
the payments made by advertisers to date, is illustrated in Fig. 3. The learning account
initially makes money. This is because the standard deviations have been set equal
to start, so that whatever begins in the lead pays more than the advertiser is paid in
round 2; that is, VOL1 < VOL2. However, losses mount, in this run reaching 5% of
revenue. Eventually, however, the best ad is run most of the time and has the lowest
VOL, owing to having run most of the time, so the learning account becomes positive
around period 7,000. The learning account eventually goes to a zero fraction of the
revenue, although this takes a very long time indeed.

There is an enormous variance in the proceeds of the learning account, based only
on the randomness of the outcomes. Some runs never produced negative revenue,
and a few had system earnings of 15% of advertiser payments for extended peri-
ods—as long as 100,000 periods. Other runs produced substantial, sustained losses
for extended periods of time—over 20,000 periods. It may be that profits in the limit
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Fig. 2 Average experienced click-rates

Fig. 3 Learning account (proportion of advertiser payments)

are cold comfort, especially in a world with discounting, given an apparent high vari-
ation in outcomes. However, an advantage of advertising as an application is that the
flow of items is enormous—billions per day—so that limit results are perhaps more
reasonable than in other settings. Discounting limits the value of learning, so that the
losses should be attenuated by discounting.
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7 Conclusion

The problem of matching advertisements and opportunities to advertise on web pages
presents a remarkable opportunity to practice economics as an engineering discipline.
The scale of the problem is unprecedented: arranging billions of transactions per day.
The complexity of the problem is unprecedented: there are trillions of potentially-
relevant product types. The speed of transactions is necessarily nearly instantaneous.
The individual value of transactions is typically very small, requiring a “very low
overhead” system.

This market design problem has already turned up several novel problems, which
are problems that are likely to be important in other contexts. First, there is a winner’s
curse type problem that arises naturally when products with differing pricing methods
compete; some pricing methods naturally have higher variance than others, and these
high variance estimates are more likely to be mis-estimated. Second, with dispersed
data about common-values of items for sale, randomization becomes a natural part
of behavior. It is worthwhile to build randomization into the system for the benefit of
bidders with limited information. Third, the statistical uncertainty of machine learning
creates externalities between transactions, and efficient markets require internalizing
these externalities. One method of doing so is to separate payments from charges,
which implies creating a learning account. Whether the learning account eventually
reaches a surplus is as yet undetermined, although under one popular machine learning
method the system does make a profit on average.

There are a variety of other quite important issues to confront in exchange design
that is applied to advertising exchanges. For example, if the exchange is to make
money, or even just recover costs, how should the exchange charge for its services?
The major threat to an exchange is that other exchanges may attract the participants.
Consequently, where possible it is useful for the exchange to charge where it adds
value: charging participants only what they get by virtue of being in the exchange. In
Yahoo!’s Right Media Exchange, many of the participants are themselves exchanges
(or ad networks). The form that value-add pricing takes is to charge participants the
surplus over what they would have gotten had their ad network not joined the exchange.
Such a pricing policy creates a dominant strategy to join the exchange, although it may
create other problems, such as incentives to form cartels.

Machine learning is opaque. A modern system may involve millions of variables,
and there is no succinct answer to the question “why did my ad lose the bidding?” The
lack of transparency of machine learning algorithms has recently spawned a vigorous
discussion around search engines, which can be critical to online businesses, especially
when adjustments to the algorithms dramatically change the fortunes of companies that
appear in the results. In such circumstances, there is a tension between transparency
and algorithmic accuracy, because complex algorithms will not appear transparent. In
the search environment, the concerns typically revolve around fairness and bias.

In an exchange, in contrast, the tension may involve effective bidding versus effec-
tive algorithms. Typically, bids are optimized to the state of the system, which includes
the algorithm as part of the environment. Increased complexity of the algorithm will
degrade the effectiveness of the bidding, and specifically the speed at which the algo-
rithm is revised will influence the appropriateness of the bids submitted. Algorithms
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depend on bids that reflect value to induce efficiency. If improvements to the algorithm
degrade the accuracy of the bids, the improvements to the algorithm may be lost.

It follows that improving bidding—making the bidders’ lives easier—is an impor-
tant goal of market design. One simple way to improve the efficacy of bidding is to
provide marketplace statistics like average prices over time. Such statistics provide a
level of comfort to bidders, who don’t have to worry that their choices are extreme,
and also guide optimization, by identifying relatively good deals. A second way to
improve the efficacy of bidding is to provide counterfactuals, such as “had you bid b,
this would have happened.” In providing both marketplace statistics and counterfac-
tuals, it is important not to reveal inadvertently the behavior of any one participant,
because that would adversely influence behavior.
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Appendix: Derivation of (1)

0 = π ′(b) = (1−α)n−1 (μ−b) (n−1)F(b)n−2 f (b)+
n−1∑
k=1

(
n−1

k

)
αk(1−α)n−1−k
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⎜⎝

b∫
0

vg(v)dv−bG(b)

⎞
⎟⎠

= (1 − α)n−1 (μ − b) (n − 1)F(b)n−2 f (b)

− (1 − α)(n − 1) f (b)

⎛
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Thus,

(1−α)n−2

⎛
⎝μ−b +

b∫
0

G(v)dv

⎞
⎠ F(b)n−2 =

⎛
⎝

b∫
0

G(v)dv

⎞
⎠ (α + (1−α)F(b))n−2

or,

(
(1−α)F(b)

α+(1−α)F(b)

)n−2

=
∫ b

0 G(v)dv

μ−b+ ∫ b
0 G(v)dv

=
∫ b

0 G(v)dv∫ ∞
0 1−G(v)dv− ∫ b

0 1−G(v)dv

=
∫ b

0 G(v)dv∫ ∞
b 1 − G(v)dv
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