
Appendix: Proofs 
 
Proof of Theorem 1: 
 
By induction:  Equation (5) establishes the base of the induction for n=0.  Note that (4) is 
satisfied by the construction of A.  Suppose that the hypothesis is true for all values less than k.  
From (7) 
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This is a linear ordinary differential equation, so we need only verify that the solution holds: 
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which establishes the hypothesis at k+1 as desired. 
 
Given the formula for vn, the price posted satisfies 
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Proof of Theorem 2: 
 

Define 
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n .  The theorem states that γn converges to 1.  Using (8), 

 
we have 
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Claim 1: γn≤1.   
 

Proof of Claim 1: Note that .1
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  Suppose, by way of contradiction, that γm 

is the first instance of γm>1.  Then γm>1≥γm-1.  Thus 
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since 
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m  is a decreasing sequence that converges to 
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.  This verifies claim 

1. 
 
Now rewrite  
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with the inequality implied by claim 1. 
 
Equality in this expression defines a new sequence ηn which is a lower bound for γn. 
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It is readily verified by induction that 
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Thus, γn is bounded between ηn and 1 and thus converges to 1.   
 

From (9): 
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The evolution of the probability that there are n items available at time t is governed by the 
differential equation 
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because qn increases when a sale is made starting with n+1 items, and is decreased when a sale is 
made when n items remain.  If the firm begins with N units at time 0, then q(N,0)=1 and q(n,0)=0 
for all n<N. 
 
Using the approximation, this becomes 
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which has the elegant binomial solution: 
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Q.E.D.  
 
Proof of Theorem 4:  

The expected value of the amount of remaining capacity, n is approximately 
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Inequality (17) is equivalent to this holding for all t, but it is more convenient to express it in 

terms of n, with 
N
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The first inequality follows from n≤N and the fact that κ was shown to be decreasing; the second 
inequality from the hypothesis of the theorem that N≤A(0), and the third inequality by noting that 
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