

Prisoner's Dilemma

		Coli	umn
Row		Confess	Don't
	Confess	(-10,-10)	(0,-20)
	Don't	(-20,0)	(-1,-1)

Dominant Strategy

• Dominant strategy is best for a player no matter what others do

		Column	
Row		Confess	Don't
	Confess	(-10,-10)	(0,-20)
	Don't	(-20,0)	(-1,-1)

Dominance Solvability

• Iterated elimination of dominated strategies

		Р	Piuny	
MS		Enter	Don't	
	Enter	(2,-2)	(5,0)	
	Don't	(0,5)	(0,0)	

Dominance Solvability

• Iterated elimination of dominated strategies

		Piuny	
MS		Enter	Don't
	Enter	(2,-2)	(5,0)
	Don't	(0,5)	(0,0)

Dominance Solvability

• Iterated elimination of dominated strategies

		Piuny	
MS		Enter Don't	
	Enter	(2,-2)	(5,0)
	Don't	(0,5)	(0,0)

Nash Equilibrium

 Outcome is a Nash equilibrium if it is the result of strategies such that each player's strategy maximizes that player's profits given the strategies of others

Battle of the Sexes

		Woman	
Man		Baseball Ballet	
	Baseball	(3,2)	(1,1)
	Ballet	(0,0)	(2,3)

Matching Pennies

		Column		
Row		Heads	Tails	
	Heads	(1,-1)	(-1,1)	
	Tails	(-1,1)	(1,-1)	

Mixed Strategies

• Column plays H with probability p

		Column		Row E payoff
Row		Heads	Tails	
	Heads	(1,-1)	(-1,1)	1 <i>p</i> + -1(1- <i>p</i>)= 2 <i>p</i> -1
	Tails	(-1,1)	(1,-1)	-1 <i>p</i> + 1(1- <i>p</i>)= 1-2 <i>p</i>

Mixed Strategy Nash Equilibrium

- Strategy for a player is probabilities over the actions
- Those probabilities maximize expected profits
 - So profits from each action chosen with positive probability is the same
 - Indifferent to specific probability values!
- Not mixed = "pure strategy"

Battle of the Sexes

		Woi		
М		Baseball (prob p)	Ballet (prob 1-p)	Man's Expected Payoff
a n	Baseball (prob q)	(3,2)	(1,1)	3p + 1(1-p) =1+2p
	Ballet (prob 1-q)	(0,0)	(2,3)	0 <i>p</i> + 2(1- <i>p</i>) =2-2 <i>p</i>
	Woman's E Payoff	2q + 0(1-q) =2q	1 <i>q</i> + 3(1- <i>q</i>) =3-2 <i>q</i>	

_	

Chicken

		Column	
Row		Swerve	Don't
	Swerve	(0,0)	(-1,1)
	Don't	(1,-1)	(-4,-4)

Cooperation

		Column		
Row		Clean Don'		
	Clean	(10,10)	(0,15)	
	Don't	(15,0)	(2,2)	

Driving on the Right

		Column		
Row		Left	Right	
	Left	(1,1)	(0,0)	
	Right	(0,0)	(1,1)	

Location Game

		NYC		
LA		No	Tax	
		Concession	Rebate	
	No	(30,10)	(10,20)	
	Concession			
	Tax Rebate	(20,10)	(20,0)	

Mudslinging

		Republican		
Dem		Clean	Mud	
	Clean	(3,1)	(1,2)	
	Mud	(2,1)	(2,0)	

Avoidance

		Rocky	
You		Party 1	Party 2
	Party 1	(5,15)	(20,10)
	Party 2	(15,5)	(0,20)

Supergames

- · Repeat a given game over and over
- · Price cutting game
- · Dominant strategy: Low

		Firm 2		
Firm 1		High	Low	
	High	(15,15)	(0,25)	
	Low	(25,0)	(5,5)	

Grim Trigger Strategy

- Cooperate (high price) until rival prices low

 then price low forever
- If one uses grim trigger, should the other?
- Payoff if defect in time *t*

$$\begin{split} V_t &= 15(\delta + \delta^2 + \dots + \delta^{t-1}) + 25\delta^t + 5(\delta^{t+1} + \delta^{t+2} + \dots) \\ &= \frac{15\delta}{1 - \delta} - \frac{\delta^t}{1 - \delta} (15 - 25(1 - \delta) - 5) \\ &= \frac{15\delta}{1 - \delta} - \frac{\delta^t}{1 - \delta} (-15 + 25\delta) \end{split}$$

Cooperation

- If $\delta > \frac{3}{5}$
- then optimal *t* = ∞, and the best response to the grim trigger strategy is the grim trigger strategy
- Cooperation is an equilibrium in the supergame supported by the grim trigger strategy

Folk Theorem

- An outcome is individually rational for a player if it is as good as the payoff in the worst Nash equilibrium
- Folk theorem: if δ is high enough, any outcome that is individually rational for all players is an equilibrium to the supergame