ECONOMICS 241

- 5. OPTIMIZATION
- 5.1 Minimization of Norms
- 5.2 Maximization of Functions
- 5.3 The Value Function

5.1 Minimization of Norms

The typical optimization problem is to maximize (or minimize) a function $f:X\to R$ subject to a constraint $x\in C$. We write

Definition 5.1: x^* maximizes $f:X\to R$ subject to $x\in C\subseteq X$ if $x^*\in C$ and $(\forall y\in C)f(y)\leq f(x^*)$

 x^* minimizes f subject to $x \in C$ if $x^* \in C$ and $(\forall y \in C)f(x^*) \leq f(y)$.

EXAMPLE 5.1: A consumer can purchase quantity $x \ge 0$ of good i at price p i per unit. $x = (x_1, \dots, x_n)$ and $p = (p_1, \dots, p_n)$. The value of the goods bundle to the consumer is U(x). The feasible purchase set is

$$C = \{x \in R^n / x_i \ge 0 \text{ and } p \cdot x < b\}$$

where b is the consumer's budget. The consumer's problem, then, is maximize U(x) s.t. $x \in C$.

EXAMPLE 5.2: A firm's feasible production set can be described by a constraint on the goods it uses $(y_1, \ldots, y_n) = y$ where $y_i > 0$ means i is an output and $y_i < 0$ means i is an input, of the form $y \in C$ (typically, increasing y_i will cause some other y_j to fall). If p_1, \ldots, p_n are the prices of the n commodities, the firm's problem is

max p•y y∈C

which means maximize $p \cdot y$ subject to $y \in C$. Typically, we will not distinguish minimization from maximization, since

$$\min_{\mathbf{x} \in C} \mathbf{f}(\mathbf{x}) = -\max_{\mathbf{x} \in C} \mathbf{f}(\mathbf{x})$$

$$\mathbf{x} \in C \qquad \mathbf{x} \in C$$
(5.1)

Theorem 5.1: Let C be a closed, convex nonempty set. Then $\exists!z\in C$ satisfying $(\forall x\in C) ||z|| \leq ||x||$.

Proof: Let $\alpha = \inf \|x\|$. α exists since $\| \|$ is bounded below by zero. By $x \in C$

Theorem 2.4, there is a sequence of points $x \in C$, $\|x\|_n \to \infty$.

By the parallelogram law:

$$\| \chi(x_n - x_m) \|^2 = 2(\| \chi_n \|^2 + \| \chi_n \|^2) - \| \chi(x_n + x_m) \|^2$$

$$= 2(\chi \|x_n\|^2 + \chi \|x_m\|^2) - \| \chi(x_n + x_m) \|^2.$$

Since x_n , $x_m \in C$ and C is convex,

$$\|\%(x_n + x_m)\| \ge \alpha$$
$$\|\%(x_n + x_m)\|^2 \ge \alpha^2.$$

Thus

$$0 \le \lim_{n \to \infty} \| \frac{1}{2} \left(\| \mathbf{x}_{n} \|^{2} + \| \mathbf{x}_{m} \|^{2} - \| \frac{1}{2} (\mathbf{x}_{n} + \mathbf{x}_{m}) \|^{2} \le n, \\ n, m \to \infty \qquad n, m \to \infty$$

$$\lim_{n \to \infty} \frac{1}{2} (\| \mathbf{x}_{n} \|^{2} + \| \mathbf{x}_{m} \|^{2}) = \alpha^{2} = \frac{1}{2} (\alpha^{2} + \alpha^{2}) - \alpha^{2} = 0.$$

Therefore, x is a cauchy sequence and has a limit point z. Since C is closed, z \in C. Since $\|\ \|$ is continuous

$$||z|| = \lim_{n \to \infty} ||x|| = \alpha \le ||x|| \text{ for all } x \in C.$$

It remains to prove uniqueness. Suppose $\|z_1\| = \|z_2\| = \alpha$. Then, by the parallelogram law

$$\alpha^{2} \leq \|\%(z_{1}+z_{2})\|^{2} = 2(\|\%z_{1}\| + \|\%z_{2}^{2}\|^{2}) - \|\%(z_{1}-z_{2})^{2}\|^{2}$$

$$= \%(\|z_{1}\|^{2} + \|z_{2}\|^{2}) - \|\%(z_{1}-z_{2})\|^{2}$$

$$= \%(\alpha^{2}+\alpha^{2}) - \|\%(z_{1}-z_{2})\|^{2}.$$

Thus, since $\|\frac{1}{2}(z-z)\| \ge 0$:

$$\alpha^{2} \leq \alpha^{2} - \|\%(z_{1}^{-}z_{2}^{-})\|^{2} \leq \alpha^{2}$$

forcing
$$\|%(z_1-z_2)\| = 0$$
, or $z_1=z_2$

Q.E.D.

EXAMPLE 5.3 Let $x,y \in \mathbb{R}^n$, and define 1 = (1,1,...,1),

$$C = \{y-\alpha 1-\beta x | \alpha, \beta \in R\}.$$

Then, for $z \in C$, $||z|| = \sum_{i=1}^{2} (y - \alpha i - \beta x)$. C is easily shown to be

convex. Thus, Theorem 5.1 provides the element $z = y - \hat{\alpha} 1 - \hat{\beta} x$ that has the least norm. If we think of $\alpha + \beta X_i$ as an estimate of the value y_i , then $y_i - \alpha - \beta x_i$ is the estimation error. Theorem 5.1 proves there is a unique vector $z = y - \alpha 1 - \beta x$ minimizing the sum of squared errors.

In the same way, the set

$$C = \{y - \alpha 1 - \beta x/0 \le \beta \le 1, \alpha \ge 0\}$$

is also convex, and there is a unique $z \in C$ minimizing the norm. Thus, the addition of these constraints on the parameters does not interfere with the application of the theorem.

When $\hat{\alpha}$ and $\hat{\beta}$ are uniquely defined (x not parallel to 1), they are the "ordinary least squares" estimates of the linear equation $y = \alpha + \beta x + \epsilon$.

Theorem 5.2: Suppose C is a closed, convex set, and x is any point. Then $\exists !z \in C$ satisfying

$$(\forall y \in C) ||x-z|| \le ||x-y||.$$

In addition

$$\forall y \in C (x-z) \cdot (y-z) \leq 0.$$

Proof: Let $\hat{C} = \{x-y | y \in C\}$.

Then there is a unique $V \in \hat{C}$ minimizing ||v|| by Theorem 5.1, since \hat{C} is closed and convex. Let z = x-v. Clearly $z \in C$, and $\forall y \in C$:

$$||x-z|| = ||v|| \le ||x-y||$$

which establishes existence and uniqueness.

Define, for any $y \in C$

$$g(\lambda) = \|x - ((1-\lambda)z + \lambda y)\|^2.$$

Since, by convexity, $(1-\lambda)z + \lambda y \in C$ and thus for $1 \ge \lambda \ge 0$:

$$g(0) = ||x-z||^2 \le ||x-((1-\lambda)z+\lambda y)||^2 = g(\lambda).$$

Therefore

$$0 \le g'(0) = \frac{\partial}{\partial \lambda} (x-z) \cdot (x-z) + 2\lambda(x-z) \cdot (z-y) + \lambda (z-y) \cdot (z-y)$$

$$= 2(x-z) \cdot (z-y)$$

or
$$(x-z) \cdot (y-z) = -(x-z) \cdot (z-y) \le 0$$
.

From theorem 5.2 there is a unique point $z \in C$ that is closest to the point x. In addition, the angle between x-z and y-z is at least 90° for all $y \in C$. This is illustrated in figure 5.1.

Theorem 5.3: Suppose C is a closed, convex set. Then, for $z \in C$: $(\forall y \in C) \|x-z\| \le \|x-y\| \text{ if and only if } (\forall y \in C) (x-z) \cdot (y-z) \le 0.$

Proof: (⇒) was proved in Theorem 5.2 (⇐). Again consider

$$g(\lambda) = \|x - ((1-\lambda)z + \lambda y)\|^2.$$

Then $g''(\lambda) = 2(z-y) \cdot (z-y) \ge 0$ and g is convex. Thus, by Theorem 2.24,

$$g(1) \ge g(0) + g'(0)(1-0)$$
, or

$$||x-y|| \ge ||x-z|| + 2(x-z) \cdot (z-y) \ge ||x-z||.$$
 Q.E.D.

5.2: Maximizaton of Functions

The treatment of this section will be given at an abstract vector space level, precisely because it is costless to do so: the proofs are the same in an abstract inner product space as in \mathbb{R}^n . Nonetheless, we have developed

Figure 5.1 For any yeC, the angle between X-Z and y-Z is at least 700.

Figure .5.2 The angle between $f'(x^*)$ and $y-x^*$ is at least 90°.

derivatives only for R, and the reader is warned against applications of these theorems outside of R^n will require the development of derivatives in the appropriate inner product space.

Since maximization of a function requires the comparison of values of the function $(f(x) \ge f(y))$, we let $f:X\to R$ be a real valued function. X will be an innder product space with inner product x•y. In addition, we shall presume f is continously differentiable.

Theorem 5.4: Suppose x^* maximizes $f:X\to R$ subject to $x\in C$, where C is a closed, convex set. Then $\forall y\in C$

$$f'(x^*) \cdot (y-x^*) \leq 0.$$

Proof: Let $y \in C$. Since C is convex, $\lambda y + (1-\lambda)x^* \in C$. Thus, since x^* maximizes f,

$$g(\lambda) = f(x^*) - f(x^* + \lambda(y - x^*)) > 0.$$

Since g(0) = 0, we have

Thus, if x^* maximizes f(x) over $x \in C$, we have that $f'(x^*)$ points away from $y-x^*$, that is, the angle formed by $y-x^*$ and $f'(x^*)$ is at least 90^0 . This is illustrated in Figure 5.2.

When $C = \{x | g(x) \le b\}$ for some scalar b, a somewhat simpler treatment can be made. Recall that C is convex if g is a convex function (Theorem 4.23). In this case, we say x^* maximizes f subject to $g(x) \le b$. If $g(x) \le b$, x is said to be feasible.

Theorem 5.5: Suppose x^* maximizes f subject to $g(x) \le b$, and f,g are continuously differentiable.

Then (i) if $g(x^*) < b$, $f'(x^*) = 0$

(ii) if
$$g(x^*) = b$$
, $\exists \lambda \geq 0 \ f'(x^*) = \lambda g'(x^*)$.

Proof: Case (i). Fix a vector z. Then, since g is continuous, there is a scalar α

$$g(x^* + \alpha_0^z) = b$$

by the mean value theorem. Thus, for sufficiently small α , $x^* + \alpha z$ is feasible. Therefore, since x^* maximizes f

$$f(x^*) \ge f(x^* + \alpha z)$$

or
$$\frac{d}{d\alpha}f(x^* + \alpha z)\Big|_{\alpha=0} \leq 0$$

Consequently, $f'(x^*) \cdot z \le 0$. Now let $z = f'(x^*)$, and we have $\|f'(x^*)\|^2 = f'(x^*) \cdot f'(x^*) \le 0$.

This implies $||f'(x^*)|| = 0$, and hence $f'(x^*) = 0$, as desired.

Proof of (ii). g(x*+az) will be feasible for very small a whenever

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{g}(x^* + \alpha z)\bigg|_{\alpha=0} \leq 0.$$

That is, $g'(x^*) \cdot z \le 0$. Thus, if $x^* + \alpha z$ is feasible, it cannot increase f, since $f(x^*) \ge f(x^* + \alpha z)$ for feasible $x^* + \alpha z$. Therefore

$$g'(x^*) \cdot z \leq 0 \Rightarrow f'(x^*) \cdot z < 0$$
.

But, by Lemma 3.7, $\exists \lambda \geq 0$

$$f'(x^*) = \lambda g'(x^*)$$

Q.E.D.

Theorem 5.5 shows that, if x^* maximises f subject to $g(x) \le b$, then $f'(x^*)$ and $g'(x^*)$ are parallel, or $f'(x^*) = 0$. We may unify this treatment by letting $\lambda=0$ in the latter case, i.e., there will exist a $\lambda>0$ so that

 $f'(x^*) - \lambda g'(x^*) = 0$. This is illustrated in Figure 5.3. Recall that the g(x) = b surface is perpendicular to g', and f(x) = a surface is perpendicular to f'. Thus, if f' and g' are not parallel, neither are the f = constant and g(x) = b surfaces, and we can slip in between them, illustrated by the vector z in Figure 5.4.

Theorem 5.5 provides necessary conditions for x to maximize f subject to $g(x) \le b$. In addition, we have

Theorem 5.6: Consider the unconstrained problem: $\max f(x)$ over $x \in \mathbb{R}^n$, and suppose f is twice continuously differentiable.

Then if x^* solves this problem: $f'(x^*) = 0$ and $f''(x^*)$ is nsd.

Proof: The first claim, $f'(x^*) = 0$, follows immediately from the "constraint" which sets g(x)=b for all x, so $g'(x^*)=0$. Then note, for $y=\theta^*+(1-\theta)x$, some $0 \le \theta \le 1$:

$$f(x) = f(x^*) + f'(x^*) \cdot (x-x^*) + \frac{1}{2}(x-x^*)^T f''(y)(x-x^*)$$

Thus

$$0 \ge \frac{f(x) - f(x^*)}{\|x - x^*\|^2} = \frac{\pi}{2} f''(y)z$$

where
$$z = \frac{x-x^*}{\|x-x^*\|}$$
.

Now send x to x*, and we have

$$0 \ge z^{\mathsf{T}} f^{\mathsf{H}}(x^{\mathsf{X}}) z.$$
 Q.E.D.

Theorem 5.7: Suppose f is concave and g is convex, and both are continuously differentiable. Then x^* maximizes f(x) subject to $g(x) \le h$ if and only if

Figure 5.3: If f'(x) is not ponallel to g'(x), a movement in the direction Z decreases g a movement in the direction Z decreases g (and hence is feasible) and increases (and hence is desirable), so x does not solve the problem.

 $\exists \lambda \geq 0$, $f'(x^*) = \lambda g'(x^*)$, $\lambda(b-g(x^*)) = 0$, and $g(x^*) \leq b$.

Proof: (⇒) follows from Theorem 5.5.

(\Leftarrow) Note that the function $f(x) + \lambda(b-g(x))$ is a concave function. By Theorem 4.21:

$$f(x) \le f(x) + \lambda(b-g(x)) \le$$

$$f(x^*) + \lambda(b-g(x^*)) + [f'(x^*) - \lambda g'(x^*)](x-x^*) =$$

$$f(x^*) + \lambda(b-g(x^*)) = f(x^*).$$

Thus, if $g(x) \le b$, $f(x) \le f(x^*)$

Q.E.D.

One application of this result concerns the direction of fastest increase of a function. That is, if we visualize $f:\mathbb{R}^n\to\mathbb{R}$ as describing altitude over \mathbb{R}^n , in what direction z is f the steepest? Recall the directional derivative of f at x in the direction z may be expressed as

$$f_z(x) = f'(x) \cdot z$$
.

To approximate the slope, we should keep the "step size", $\|z\|$ constant. Thus, to find the direction of steepest ascent of f, we should like to find the z solving

$$\max f'(x) \cdot z$$

s.t.
$$||z|| \leq 1$$

or, equivalently,

$$\max f'(x) \cdot z$$

$$s.t. \sum_{i=1}^{n} z_{i}^{2} \leq 1.$$

Thus, there is a $\lambda \geq 0$ (since the constraint is convex, and the objective function linear and hence concave) so that:

$$f'(x) = 2\lambda z$$
.

Moreover

$$1 = z \cdot z = (2\lambda)^{-2} (f'(x) \cdot f'(x))$$

and $2 \lambda = + \|f'(x)\|$

Since $\lambda \geq 0$, we desire $2\lambda = ||f'(x)||$ and this gives the solution

$$z = \frac{f'(x)}{\|f'(x)\|},$$

provided $f'(x) \neq 0$. That is, the direction of steepest ascent of f at x is f'(x), and the derivative measures not only the slope of the function, but the direction in which the function is increasing fastest.

If f'(x) = 0, no direction yields ascent or descent. Finally, if we wanted the direction of steepest descent, we would have used the other solution $2\lambda = \|f'(x)\|$.

5.3 The Value Function

Define

$$\forall (b) = \max f(x) \\ \{x | g(x) \le b\}.$$

V(b) is the value of the function f, when maximized subject to $g(x) \le b$. Thus, if f is utility and $g(x) = p \cdot x$ is expenditure, V(b) is the utility the agent achieves for a given expenditure level.

Theorem 5.8: If f is concave and g is convex, V is a nondecreasing concave function and $V'(b) = \lambda$, the Lagrangian multiplier, whenever V' exists.

Proof: First, we show V is nondecreasing. Let x* maximize V for $g(x) \le b$. Then, if $b_1 < b_2$. $g(x^*) \le b_2$. Thus $V(b_2) \ge f(x^*) = V(b_1)$, since x* is feasible. That is V is nondecreasing.

Now let b < b and x maximize f subject to $g(x) \le b$. Let $0 \le \lambda \le 1$.

Then, by the convexity of g:

$$\begin{split} g(\lambda x_{1}^{*} + (1-\lambda)x_{2}^{*}) & \leq \lambda g(x_{1}^{*}) + (1-\lambda)g(x_{2}^{*}) \leq \lambda b_{1} + (1-\lambda)b_{2} \text{ and thus} \\ \lambda x_{1}^{*} + (1-\lambda)x_{2}^{*} \text{ is feasible for } b = \lambda b_{1} + (1-\lambda)b_{2}. \quad \text{Thus, by the concavity of } f \\ V(\lambda b_{1} + (1-\lambda)b_{2}) & \geq f(\lambda x_{1}^{*} + (1-\lambda)x_{2}^{*}) \geq \lambda f(x_{1}^{*}) + (1-\lambda)f(x_{2}^{*}) = \\ \lambda V(b_{1}) + (1-\lambda)V(b_{2}) \end{split}$$

and hence V is concave.

Now let x*(b) maximize f(x) subject to $g(x) \le b$. Note that, if $g(x*((b)) = b, g'(x*(b)) \cdot x*'(b) = 1$, and

$$V'(b) = \frac{d}{db}f(x^*(b)) = f'(x^*(b)) \cdot x^{*'}(b) = \lambda g'(x^*(b)) \cdot x^{*'}(b) = \lambda.$$

If g(x*(b)) < b, then $\lambda=0$ and

$$V'(b) = f'(x^{*}(b)) \cdot x^{*}(b) = \lambda g'(x^{*}(b)) \cdot x^{*}(b) = 0 = \lambda$$
Q.E.D.

Theorem 5.8 shows that λ receives the interpretation of a shadow value: λ is the value (increase in f) of a slight increase in b. Effectively, λ is the price one would be willing to pay to increase b slightly: λ is the implicit value of weakening the constraint. For f concave and g convex, we now know that λ is nonnegative (Theorem 5.7), and nonincreasing in b, since V is concave forces $0 \geq V^{\alpha}(b) = \lambda^{\alpha}(b)$.

One useful way of expressing the equation

$$f'(x^*) = \lambda g'(x^*)$$

is
$$\frac{\partial f}{\partial x}$$
 $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial x}$

since this eliminates λ from the first n-1 equalities.

Now suppose the functions f and g have a parameter α as an argument, and our problem is

$$\max f(x,\alpha) \text{ s.t. } g(x,\alpha) \leq b$$

Let $x^*(b,\alpha)$ accomplish this, and $V(b,\alpha) = f(x^*(b,\alpha),\alpha)$.

Then

$$\frac{dV(b,\alpha)}{d\alpha} = \frac{\partial f}{\partial x}(x^*(b,\alpha)) \cdot \frac{\partial x^*}{\partial \alpha} + \frac{\partial f}{\partial \alpha}$$
$$= \lambda \frac{\partial g}{\partial x} \cdot \frac{\partial x^*}{\partial \alpha} + \frac{\partial f}{\partial \alpha}.$$

But, if $\lambda > 0$, $g(x^*, \alpha) = b$ and

$$\frac{\partial g}{\partial x} \frac{\partial x^*}{\partial \alpha} + \frac{\partial g}{\partial \alpha} = \frac{\partial b}{\partial \alpha} = 0.$$

so
$$\frac{dV}{d\alpha} = \frac{\partial f(x,\alpha)}{\partial \alpha} - \lambda \frac{\partial g(x,\alpha)}{\partial x} \Big|_{x=x^*(b,\alpha)}$$

This is called the Envelope Theorem:

$$\frac{\mathrm{df}}{\mathrm{d\alpha}}(\mathbf{x}^{*}(\mathbf{b},\alpha)\alpha) = \frac{\partial}{\partial \mathbf{x}}[f(\mathbf{x},\alpha)-\lambda g(\mathbf{x},\alpha)]\Big|_{\mathbf{x}=\mathbf{x}^{*}(\mathbf{b},\alpha)}$$

One way of remembering all these results uses the "Lagrangian":

$$L(x,\lambda,b) = f(x^*) + \lambda(b-g(x^*))$$

$$\frac{\partial L}{\partial b} = \lambda$$

$$0 = \frac{\partial L}{\partial x^*} = f'(x^*) - \lambda g'(x^*)$$

$$\lambda(b-g(x^*)) = 0$$