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5.1 Minimization of Norms
The typical optimization problem is to maximize (or minimize) a function

f:X2R subject to a constraint x € C. We write

Definition 5.1: x* maximizes f:X-R subject to x € C C X if x* € C and
(Vy € C)f(y) < £(x*)

x* minimizes f subject to x € C if x* € C and
(Vy € CO)f(x*) < f(y).

EXAMPLE 5.1: A consumer can purchase quantity x 2> 0 of good i at price p
i i

per unit. x = (xl,...,xn) and p = (pl,...,pn). The value of the goods bundle
to the consumer is U(x). The feasible purchase set is

c={x¢€ Rn/xi > 0 and pex < b}
where b is the consumer's budget. The consumer's problem, then, is

maximize U(x) s.t. x € C.

EXAMPLE 5.2: A firm's feasible production set can be described by a
constraint on the goods it uses (yl,...,yn)=y where yi > 0 means i is an
output and ys < 0 means i is an input, of the form y € C (typically,
increasing y; will cause some other yj to fall). 1If pl,...,pn are the prices
of the n commodities, the firm's problem is

max pey
yec

which means maximize pey subject to y € C. Typically, we will not

distinguish minimization from maximization, since



min f(x) = -max-f(x) (5.1)
x€C x€C

Theorem 5.1: Let C be a closed, convex nonempty set. Then 3!z € C
satisfying (Vx € ¢) |lz|l < ||xll.

Proof: Let o = inf ||x||. o exists since || || is bounded below by zero. By
xeC :

1L
Theorem 2.4 , there is a sequence of points x € C, ||x %] » «.
n n

By the parallelogram law:
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Therefore, x is a cauchy sequence and has a limit point z. Since C is
n

closed, z € C. Since || || is continuous
lz]] = 1im "an = a < |Ixl}l for all x € C.
n-w
It remains to prove uniqueness. Suppose Hzlﬂ = sz" = «. Then, by

the parallelogram law
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Thus, since ||%(z —zZ)H > 0:
1

2 2

. 2 2
a” <a - "A(zl—zz)" <a

i 3, — = =
forcing Ilb(z1 zZ)H 0, or z =z, Q.E.D.

n
EXAMPLE 5.3 Let x,y € R, and define 1 = (1,1,...,1),

C = {y-al-Bxla,B € R}.

2 n 2
Then, for z € C, ||z|| = ‘Xl(y. - al - Bx ) . C is easily shown to be
i=1 i i

convex. Thus, Theorem 5.1 provides the element z = y-al-fx that has the least
norm. If we think of o + Bxi as an estimate of the value y_ , then

i
y; - e - Bxi is the estimation error. Theorem 5.1 proves there is a unique

vector z = y-cl-Bx minimizing the sum of squared errors.

In the same way, the set

C=(y-al -Bx/0<B<1, a>0}
is also convex, and there is a unique z € C minimizing the norm. Thus, the
addition of these constraints on the parameters does not interfere with the

application of the theorem.

When ; and ﬁ are uniquely defined (x not parallel to 1), they are the

"ordinary least squares" estimates of the linear equation y = a+Bx+e.

Theorem 5.2: Suppose C is a closed, convex set, and x is any point. Then
3!z € C satisfying

(Vy € ) |lx-zll < lIx-yll.
In addition

Vy € C (x-z)+(y-z) < O.

Proof: Let C = {x-yly € c}.

Then there is a unique V € C minimizing l|lv|| by T'.corem 5.1, since C is closed

and convex. Let z = x-v. Clearly z € ¢, and Vy € C:



lx-zll = llvil < llx-yli
which establishes existence and uniqueness.
Define, for any y € C

g(M) = lIx - ((1-M)z + a2,

Since, by convexity, (1-A)z + Ay € C and thus for 1 > A 20:

g(0) = lIx-zlI? < IIx=((1-Mzaan|I? = (0.

Therefore
d 2
0 <g'(0) = S{(x—z)'(x—z) + 2A(x-z)*(2-y) + A (z-y)(z-y)
A=0
= 2(x-z)*(z-y)
or (x-z)e(y-z)= —-(x~2z)+(z-y) < 0. Q.E.D.

From theorem 5.2 there is a unique point z € C that is closest to the

point x. In addition, the angle between x-z and y-z is at least 90o for all

y € C. This is illustrated in figure 5.1.

Theorem 5.3: Suppose C is a closed, convex set. Then, for z € C:

(Vy € O)llx-z|| < lIx-yll if and only if (Vy € C)(x-z)+(y-z) < O.

Proof: () was proved in Theorem 5.2 («¢). Again consider

g(M) = lIx - ((1-Mz + a2,

Then g"(A) 2(z-y)+(z-y) > 0 and g is convex. Thus, by Theorem 2.24,
g(1) > g(0) + g'(0)(1-0), or

Ix-yll > llx-zll + 2(x-z)*(z-y) > lIx-z||. Q.E.D.

5.2: Maximizaton of Functions
The treatment of this section will be given at an abstract vector space

level, precisely because it is costless to do so: the proofs are the same in

an abstract inner product space as in R". Nonetheless, we have developed
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n
derivatives only for R , and the reader is warned against applications of

these theorems outside of Rn will require the development of derivatives in
the appropriate inner product space.

Since maximization of a function requires the comparison of values of
the function (f(x) > f(y)), we let f:XR be a real valued function. X will
be an innder product space with inner product xey. In addition, we shall

presume f is continously differentiable.

Theorem 5.4: Suppose x* maximizes f:X*R subject to x € C, where C is a
closed, convex set. Then Vy € C

f!(x*)e(y-x*) < 0.

Proof: Let y € C. Since C is convex)ky + (1-A\)x* € C. Thus, since x*
maximizes f,
g(g) = f(x*) - f(x*+A(y-x*)) > 0.
Since g(0) = 0, we have
1
0 < lim -(g(\) - g(0)) = g'(0) = —f'(xX)e(y-x*), Q.E.D.
A0 A
Thus, if x* maximizes f(x) over x € C, we have that f'(x*) points away
from y-x*, that is, the angle formed by y-x* and f'(x*) is at least 90°. This

is illustrated in Figure 5.2.

When C = {x|g(x) < b} for some scalar b, a somewhat simpler treatment
can be made. Recall that C is convex if g is a convex function (Theorem
4.23). 1In this case, we say x* maximizes f subject to g(x) < b. If

g(x) < b, x is said to be feasible.

Theorem 5.5: Suppose x* maximizes f subject to g(x) < b, and f,g are

continuously differentiable.



Then (i) 1if g(x*) < b, f'(x*) =0

(ii) if g(x*) = b, IN > 0 £ (x*) = Ag'(x*).

Proof: Case (i). Fix a vector z. Then, since g is continuous, there is a
scalar @,

g(x* + aoz) =b
by the mean value theorem. Thus, for sufficiently small «, %X + az is
feasible. Therefore, since x* maximizes f

f(x*) > f(x* + az)

d
or —f(x* + az)
da

A
o

a=0
Consequently, f'(x*)+z < 0. Now let z = f!'(x*), and we have
2
HE' (%) ||© = £ (x*)-£1(x*) < O.

This implies ||f'(x*)|| = 0, and hence f'(x*) = 0, as desired.

Proof of (ii). g(x*+az) will be feasible for very small « whenever

d
—g(X* + az) < 0.
dx

a=0

That is, g'(x*)ez < 0. Thus, if x* + az is feasible, it cannot increase f,
since f(x*) > f(x* + az) for feasible x* + az. Therefore

B'(x*%)ez < 0 > £t (xX)+z < 0.
But, by Lemma 3.7, 3\ > O

£'(x*) = Ag'(x*)
Q.E.D.

Theorem 5.5 shows that, if x* maximises f subject to g(x) < b, then
f'(x*) and g'(x*) are parallel, or f'(x*) = 0. We may unify this treatment by

letting A=0 in the latter case, i.e., there will exist a A > 0 so that



£l (xx) -Ag'(x*) = 5. This is illustrated in Figure 5.3. Recall that the

g(x) = b surface is perpendicular to g', and f(x) = a surface is

perpendicular to f'. Thus, if f' and g' are not parallel, neither are the f =
constant and g(x) = b surfaces, and we can slip in between them, illustrated
by the vector z in Figure 5”§.

Theorem 5.5 provides necessary conditions for x to maximize f subject to

g(x) < b. 1In addition, we have

n
Theorem 5.6: Consider the unconstrained problem: max f(x) over x € R , and

suppose f is twice continuously differentiable.

->
Then if x* solves this problem: f!(x*) = 0 and f"(x*) is nsd.

Proof: The first claim, f'(x*) = 0, follows immediately from the "constraint"

>
which sets g(x)=b for all x, so g'(x*) = 0. Then note, for y = 6% + (1-0)x,

some 0 < 6 < 1:

f(x) = £(x*) + f1(xk)e(x-x*) + %(x—x*)rf"(y)(x—x*)

Thus
f(x) - £(x*) T
0o > = %z f"(y)z
|Ix-x*}i
X-X*
where z = ———,
Hx—xX]|

Now send x to x*, and we have

0> z fu(x*)z. Q.E.D.

Theorem 5.7: Suppose f is concave and g is convex, and both are continuously

differentiable. Then x* maximizes f(x) subject to g(x) < b if and only if






In 2 0, £1(x*) = Ag'(x*), A(b-g(x*)) = 0, and g(x*) < b.

Proof: (=) follows from Thenrem 5.5.
(¢) Note that the function f(x) + A(b-g(x)) is a concave function. By
Theorem 4.21:
f(x) < £(x) + Nb-g(x)) <
£(x*) + M(b-g(x*)) + [£'(x*) — Ag!'(x*)](x-x*) =
£(x*) + AMb-g(x*)) = f(x*).
Thus, if g(x) < b, f(x) < f(x*) " Q.E.D.
One application of this result concerns the direction of fastest
increase of a function. That is, if we visualize £:R" - R as describing

altitude over Rn, in what direction z is f the steepest? Recall the

directional derivative of f at x in the direction z may be expressed as
fz(x) = f'(x)z.
To approximate the slope, we should keep the "step size", |z||
constant. Thus, to find the direction of steepest ascent of f, we should like
to find the z solving
max f'(x)e-z
s.t. |lzfl <1
or, equivalently,

max f!(x)e+z

Thus, there is a A > 0 (since the constraint is convex, and the
objective function linear and hence concave) so that:

f'(x) = 2Az.
Moreover

1 =2z = (20) " 2(£1 (1) £ (x))
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and 2 A\

+ £ Goll

Since N\ > 0, we desire 2\ = ||[f'(x)|| and this gives the solution

£ (x)
z = s
hf'(x)H

.*
provided f'(x) # 0. That is, the direction of steepest ascent of f at x is

f'(x), and the derivative measures not only the slope of the function, but the
direction in which the function is increasing fastest.

If £'(x) = 0, no direction yields ascent or descent. Finally, if we
wanted the direction of steepest descent, we would have ;sed the other

solution 2\ = }|f' (x)]].

5.3 The Value Function
Define

V(b) = max f(x)
{xlg(x) < b}.

V(b) is the value of the function f, when maximized subject to
8(x) < b. Thus, if f is utility and g(x) = pex is expenditure, V(b) is the

utility the agent achieves for a given expenditure level.

Theorem 5.8: 1If f is concave and g is convex, V is a nondecreasing concave
function and V'(b) = A, the Lagrangian multiplier, whenever V' exists.

Proof: First, we show V is nondecreasing. Let x* maximize V for g(x) <b .
1

Then, if b1 < b2. g(x*) < bz. Thus V(bz) > f(x*) = V(bl), since x* is
feasible. That is, V is nondecreasing.

*

Now let b1 < b and x maximize f subject to g(x) < b . Let 0 < A
2 i i
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Then, by the convexity of g:

* * x %
g(kxl + (1—k)x2) < Xg(xl) + (1—X)g(x2) < Ab, + (1-Mb, and thus

1
* X
kxl + (l-k)x2 is feasible for b = Xbl + (l-k)bz. Thus, by the concavity of f
* * * %
V(Xb1 + (l—k)bz) > f(kx1 + (l—k)xz) pd kf(xl) + (1—X)f(x2) =
kV(b1)+(1—X)V(b2)
and hence V is concave.

Now let x*(b) maximize f(x) subject to g(x) < b. Note that, if

g(x*((b)) = b, g'(x*(b))ex*'(b) =1, and

d
Vi(b) = E;f(x*(b)) = £1(x*X(b))ex*!(b) = Ag'(x*X(b))ex*!(b) = A.

If g(x*(b)) < b, then A=0 and

Vi(b) = £'(x*(b))ex*'(b) = Ag'(x*(b))ex*!(b) =0 = 1 Q.E.D.

Theorem 5.8 shows that A receives the interpretation of a shadow
value: \ is the value (increase in f) of a slight increase in b.
Effectively, A\ is the price one would be willing to pay to increase b
slightly: \ is the implicit value of weakening the constraint. For f
concave and g convex, we now know that A is nonnegative (Theorem 5.7), and
nonincreasing in b, since V is concave forces 0 > V*(b) = A'(b).

One useful way of expressing the equation

£1(x*) = Ag'(x*)

af /ox af /3x af/ax
1 2 n
is = B ... = mmemme—— = A
db/2x dg/ax dg/9Ix
1 2 n

since this eliminates A from the first n-1 equalities.

Now suppose the functions f and g have a parameter « as an argument,

and our problem is

max f(x,a) s.t. g(x,a) < b
X
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Let x*(b,a) accomplish this, and V(b,a) = f(x*(b,a),a).

Then
dv(b,a) of Ix* of
—_— = —(x*(b,a))— + —
da ox da da
dg aIx* of
= A—mo— + —,
X Jda Ja

But, if A > 0, g(x*,e) = b and

ag ox*x ag db
_.o_+——=—-=0

X Jda da da

dav If(x,a) Ig(x,a)
SO = = -\
da da ox

x=x*(b,x)

This is called the Envelope Theorem:

%

daf
—(x*(b,a)a) = —[f(x,a)-Ag(x,a)]
* x=x*(b,a)

One way of remembering all these results uses the "Lagrangian":

L(x,\,b) = £(x*) + A(b-g(x*))

o
]

oL
— = f1(x*) - Ag'(x*)
IxX*

A(b-g(x*)) =0



