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4.1 Continuity

The function f maps R into R™ if, for each vector or n-tuple xERn, f
associates with x a point y = f(x) € ™. In this case, we write f:RnéRm.
EXAMPLE 4.1: Let f(x) = ||x|| for x € R®. Then f:Rn--)R1 is the function
giving the length of the vector x.
EXAMPLE 4.2: fi(xl,...,xn) = X is the ith component function, fi picks up
the ith component of (xl,...,xn).

2 2
EXAMPLE 4.3: f:R 2R satisfies f(xl,xz) = (-x ,xl). This function rotates

2
the axes 90° counterclockwise, and all points with them.
DEFINITION 4.1: f£:R™SR" is continuous at X, if (Ve > 0)(38 > 0)
Hx—on <83 Hf(x)—f(xo)" < e.

Generally, we let || || refer to the appropriate vector space. That is,

%
n n 2 n m

if x € R, then ||| =| ¥ x ) . For any f:R »R , the component

functions .
i=sl1 1

fi:Rn4R are defined by f(x) = (fl(X)' fz(x),...,fm(x)). Thus, definition 4.1
defines continuity as requiring that as x gets close to Xg» f(x) gets close to
f(xo). This mimics definition 2.6, with the only change that we must use
norms instead of absolute value as our notion of distance. If f is continuous
at all xo, we say f is continuous.

THEOREM 4.1: f is continuous at X, if and only if all of the component
functions of f are continuous at Xq-

Proof: (®) Let ¢ > 0. Then 38§ > O, Hx—xo" <482 "f(x)—f(xo)H < €.

Thus, if Hx—xo" < $§

I£, (x) - £ ()1 S NEGO) - £x DIl < &

and fi is continuous at Xy

(¢) Suppose each fi is continuous at Xo» and let ¢ > 0. Since e/vn > 0,

there is a éi >0



- > - <e.
% on < éi Ifi(x) fi(xo)l P

8 1}

Thus, if Hx-on < § = mln{él, 62,..., n

n 24 n 2 A
HEG) = £Cx )l = (2 (£ (%) = £ (x))) < () (e/vn) ) =c¢
0 i=1l 1 i 0 i=1

and f is continuous. Q.E.D.

Thus f:RSR" is continuous if and only if all of its components are
continuous. Thus, functions into Rm are, as far as continuity is concerned,
really only a grouping of m functions into R, or real valued functions.

THEOREM 4.2: f:R'SR" is continuous at X, if and only if, for all sequences

1

X »x ., the sequence f(x1)+f(xo).

0’
Proof: exercise 4.5.
This chapter contains several theorems whose proofs are exercises.

Typically, the corresponding theorem in chapter 2 will provide the proof if

| | is replaced with || }].

THEOREM 4.3: Suppose £:RTR" and g:Rn+Rm are continuous. Then

i). h(x) f(x) + g(x) is continuous

i1). h(x) = af(x) is continuous for scalar o

iii). h(x)

f(x) » g(x) is continuous
Proof: exercise 4.6.
n__m m _k .
THEOREM 4.4: Suppose f:R PR and g:R 2R are both continuous. Then
h:Rn->Rk defined by h(x) = g(f(x)) is continuous.
Proof: Let ¢ > 0. Since g is continuous, (Vyo)(Bé1 > 0)

Hy—yoﬂ <$, 2 Hg(y)—g(yo)ﬂ < e

Since f is continuous at x 3 62 >0

o’
Hx—on < 62 > ||f(x) - f(xo)ﬂ < 61

Thus, if "x—xoﬂ < 52, letting y = £(x) and Vo = f(yo)

"x—on <8, HE¢x) - £(x Ol < 8, = lls(£G)) - B(E(x DI < e.



Thus h(x) = g(f(x)) is continuous at xo. Since xo was arbitrarily chosen, h

is continuous.

DEFINITION 4.2: A C R" is open if
(vx € A)(3e > 0) {y/llx-yll < e} C A
If AS is open, A is said to be closed.

It is useful to abbreviate

N () = {y/lix-yll < e},
which is called an e-ball or ¢ neighborhood. 1In RZ, Ne(x) is the set of
points within a disk of radius e, centered at x. 1In Rl, Nc(x) is the open
interval (x-¢, x+e). 1In R3, Nc(x) describes the set of points inside the
sphere of radius ¢ centered at x.

In an open set A, all points are in the interior of A, in the sense
that, at any point x € A, we can move by an amount ¢ > 0 and still stay
inside A. Thus, open sets do not contain their borders, for at the border of
A, any movement away from A puts one outside A.

THEOREM 4.5: Let Ai C R" be open for all i € I'. Then

.U A is open.
ier i

Also, if T has finitely many elements,.gr A is open. Finally, ¢ and
1 1

n
R are open.

Proof: Suppose x € U A . Then, by Definition 1.2, 3jer, x€ A . Since
ier i 3

A is open, 3¢ > 0, N(x) CA C U A . Thus N (x) €C U A . Since x
€ J ier i € ier i



was chosen arbitrarily, U A 1is open.
i€er i

Now suppose I' has finitely many elements. If x€ N A , then Vi€rl,
ier i

x€ A,. Since A, is open, 3 ¢, >0, N (x) CA,. Let e=min{e,/i€rl}.
i i i € i i
i
Since I' is finite, ¢ > 0. Furthermore Nc(x) CN (x) C Ai for all i, and
€
i

thus, N (x) C N A . Since x was arbitrary, N A 1is open.
€ ier i ier i

Finally, ¢ is open trivially, since there are no x € ¢. R" is open,
since Nl(x) Cc R" for all x.

Q.E.D.

Theorem 4.5 shows that arbitrary unions and finite intersections of open
sets are open. We see from the proof, as well, that typically intersections
of infinitely many open sets are not open, and the reason is the
€ = min{si/iGF} used in the proof may be zero.

EXAMPLE 4.4: Let An = (~1/n, 1/n) CR, and I = {1,2,3,...}. Then
N A = {0}
ier i

which is not open.

THEOREM 4.6: Let Ai C R" be closed for all i € T. Then

N A 1is closed.
ier i

Also, if T has finitely many elements, U A is closed. ¢ and R" are
ier i

closed.

Proof: This is just Theorem 4.5, and De Morgan's Laws.



In words, arbitrary intersections, and finite unions, of closed sets are
closed. The use of closed sets is that they contina their limit points.
THEOREM 4.7: Suppose xn+xo, and xn € A for all n, and A is closed. Then
xo € A.

Proof: By contradiction: suppose X, & A. Then X, € Ac, which is open by

definition. Thus 3¢ > 0 so that Ne(xo) Cc I\ Since xn*x N,

0
n>N3|lx -x || <e, which means ¥n > N, x € N (x ) c Ac, so x & A,
= n 0 n € O n
contradicting the hypothesis X € A.
Q.E.D.
Thus, if A is closed, all cauchy sequences in A converge to something in A.

Indeed, this characterizes the notion of a closed set, by the following

theoremn.

THEOREM 4.8: A C Rn is closed if and only if all cauchy sequences xn,

(¥n) x € A, converge to a point X, € A.

Proof: (=) From Theorem 3.17, all cauchy sequences converge, and by Theorem
4.7, the limit is in A.

(¢) By contrapositive, we show that if A is not closed, then there exists a
cauchy sequence converging to something outside A.

Since A is not closed, AS is not open, and 3 x_ € AS ve > 0,

0
Ne(xo) is not contained in Ac. Thus, Ve > 0, Nc(xo) NA# ¢,
c . s s
(for Ne(xo) NA=¢ > Nc(xo) CA7). Let Xy € Nl(xo) N A (since this is
nonempty), and generally let
xn € Nl/n(xo) N A
(xn exists since Nc(xo) N A is nonempty for all ¢, and in particular

€ = 1/n).



Clearly xn+xo, and hence is cauchy. By construction, xn € A for all
n. Finally, X, & A by construétion.
Q.E.D.
Thus, we see that closed sets contain their limit points, i.e., if we

construct a convergent sequence out of members of a closed set, it converges
to something in the set.
Let A C R® and f:Rn+Rm. We shall generally use the notation:
£(8) = {y € R™/(3x € &) £(x) = y}
Thus, f(A) is the subset of Rm that f maps A into. Similarly, for B - Rm,
£71(8) = {x € B/£(x) € B}
f—l(B) is the subset of R" that is mapped into B.
THEOREM 4.9: f£:R™SR" is continuous if and only if, for all open sets
B C Rm, fnl(B) is open.
Proof: () Suppose f is continuous and B is open. For each f(x) € B,

3 € >0 and N (f(x)) C B. Since f is continuous, at each point x,
€

X
& > - > -
3 x 0 so that |ly-x|| < 6x HECy)-£(x)]| < €.
or

y € N6 (x) » £(y) € Nc (f(x)) C B.

X X

Thus, if y € Né (x), then f(y) € B, forcing Vy € N6 (x), y € f_l(B), or

X X

N, (0 C£lB).

X

Thus f—l(B) is open, since there is a neighborhood Né (x), around each

X
point x € f_l(B), that is contained in f_l(B).

(¢) Let x € R" and ¢ > 0. Let

B

m
{z € R /|lz-f(x)]|] < €}.



By hypothesis f_l(B) is open, and by definition, x € f_l(B). Thus there is a
§ >0, so that N (x) C £ °(B). That is,
Vy € Ns(x), f(y) € B, or, equivalently,
Ix-yll < & = lI£(x) - £l < e.
Thus f is continuous.
Q.E.D.

Theorem 4.9 shows the equivalence of the ¢-§ definition of continuity
and the effect of f on open sets (in particular, )‘.'_1 of an open set is open).
The latter is called the topological definition of continuity, and, generally,
many of our results can be expressed in terms of open sets. The field called
topology proves theorems about open and closed sets in abstract spaces, and
provides some elegant proofs of quite deep theorems. Topology has been more
successfully applied in Economics (mostly in social choice) than in any other

science, and we shall return to it in a later chapter.



4.2 MATRICES
A matrix is an array of real numbers. Matrices have dimensions mXn,
meaning the array has m rows and n columns for integers m and n.

Symbolically, an mXn matrix A may be represented

a a a
11 12 1n
A = a a ... a (4.1)
21 22 2n
a a . a
ml m2 mn

, a .,a

EXAMPLE 4.5: For m=1, a matrix is a real vector in Rn, (a1 ),

1’ "12° 7 1in

and is called a row vector since it is a row of a matrix. For n=1, the mX1
matrix is a column vector, being comprised of a single column

a
11

a
21

o
ml

EXAMPLE 4.6: Some matricies, with their dimensions listed below then

(1 V2 16 s 8 1
4 3 1.9) (7 3.1> <7>
2X3 2X2 2X1
It is useful to refer to a typical component of a matrix, aij is the
element in the ith row and jth column of A in 4.1. Matrices of the same

dimensions mXn are added by adding the components:

a ...a b ... b /a +b ... a +b
11 1n 11 1n / 11 11 in 1n

A+B = . N P A ) ) (4.2)

a. “ee a' b ... b a '+b ... a '+b
ml mn ml mn ml ml mn mn



th
Rather than write out the entire matrix, we may refer to the i,j term

(A+B), ,=A, ,+B, ,=a,,+b, . (4.3)
1,] 1,3 1,] 1] 1]

Scalar multiplication of matrices is accomplished by multiplying all the

components by the scalar

A\a R ¥-1
11 in

A = ) (4.4)

Xé R ¥-1
ml mn

The reader may verify that the set of mXn matrices forms a vector space,

given these definitions. Matrices with different dimensions cannot be added.

EXAMPLE 4.7
4 7 6 0 446 740 10 7
3 1]+ 3 3])=| 3+3 143 | = 3 4
5 5 15 5+41 545 6 10

4 7 8 14

203 1)l 6 2

5 5 0 10

T
The transpose of a matrix A, denoted A, turns columns into rows and

rows into columns.

a a ...a
11 12 1in

a a ...a
T 21 22 2n
. . . (4.5)

...a
ml m2 mn

Thus, the transpose of an mXn matrix is nXm.
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EXAMPLE 4.8
T
3 7 , T 4 5
3 2 8 4 8 6
2 2 = = 8 0
7 2 9 501
8 9 6 1

In the typical element notation

)T =

(a (4.6)

.. a,.
ij ji

Matrices may be "multiplied” through a procedure which looks odd at

first glance but is very useful. If A is mXn and B is nXk, the result of

multiplying A and B, denoted AB, is mXk. The i,jth element of AB is

n
(AB) = Y a b (4.7)
ij =1 i% %j

This corresponds to taking the ith row of A and the jth column of B and

applying the dot product. If we denote the ith column of A by a . and the jth

row of A by aj., so

a =(a , a seeesd ) (4.8)

Then

(AB),. =a ., * b, (4.9)
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EXAMPLE 4.9
6 1 .
3 2 0 s 3 3e6 + 203 + 0e2 3e1 + 2¢3 + 0e5
115 " \1e6 + 13 + 5.2 1el + 1°3 + 55
2 5
24 9
~ \19 29
. 1 ,
3 6 6\ | X 3¢l + 65 + 61 39
4 1 5 ] " \4el + 1e5 + 5.1/  \14
T
An nXn matrix is symmetric if A" = A, that is, aij = aji' The reader

should verify the following properties, for A, B mXn and C is nXk:

A+B=B+A (4.11)
(A + B)C = AC + BC (4.12)
ac)T = ¢t AT (4.13)
ahHT - a (4.14)

Generally, AB is not equal to BA.

EXAMPLE 4.10
1 0 11 11 2 1 1 1 1 0
= #
11 2 1 3 2 31 2 1 11

However, if A and B are both nXn and symmetric:

(4.10) T T (4.13) T
AB = A B = (BA) vyuﬁtj (4.15)

since BA is syminetric if A and B are.
An important special case emerges when x is an nX1 column vector and A

is an mXn matrix:
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n
a °x Y a x
-1 i=1 i1 i
a ox .
Ax = *2 = . (4.16)
n
a °x Loa -x
m i=l im i

Thus, f(x) = Ax is a function mapping Rn into Rm.

2 0 -1
EXAMPLE 4.11: The function f(x) = Ax where x € R and A = 1 0 rotates

the axes by 900. To see this, note

X*Ax = (xl.xz)-A(xl.xz) = (xl,xz)-(—xz,xl) = -x X, + XX, = 0,

and thus Ax is orthogonal (perpendicular) to x for any x. Thus A rotates all
vectors by 900.

DEFINTION 4.3: An nXn matrix A is positive semidefinite (positive definite) if

- T
(Vx # 0) x Ax > 0 (> 0) (4.17)

and is negative semidefinite (negative definite) if

- T
(Vx # 0) x AXx < 0 (< 0) (4.18)

We see immediately that, if A is positive semidefinite, then the function

f(x) = Ax rotates every vector x by no more than 900, since

xT Ax = x*(Ax) > 0, indicating the angle between x and Ax does not exceed
o

90" . Analogously, positive definite matrices map vectors x into new vectors

Ax less than 90° away. Negative definite matrices map vectors more than 90°

away from their starting point.
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DEFINITION 4.4: A is an eigenvalue for an nXn matrix A with associated

eigenvector v # 0 if

Av = Av (4.19)
Generally eigenvalues and eigenvectors can involve complex (imaginary,
involving v-1) terms.

EXAMPLE 4.12: The matrix

2 -3 3 1
1 has eigenvalues 1 and 5 with eigenvectors 1 and( 1
Since
2 -3 3 6 -3 3
-1 4/ \1/) \s3+a)  \1
. P
2 -3 1 2 +3 5 1
-1 4f\-1) \-1-4) -1

EXAMPLE 4.13: The matrix

0 1
has eigenvalues v-1 and -v-1 and associated eigenvectors
-1 0

1 -1

Wy B Wy

From (4.19), we see that if v is an eigenvector, then av is an eigenvector

for any scalar « # 0. An important matrix is the identity matrix

(4.20)
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NOTE, for nXn matrix A

IA = AT = A (4.21)
If A is an nXn matrix, a7l s defined by

AA = I (4.22)
if such a matrix A”' exists.

EXAMPLE 4.14:

2 1 -1 1/3 -1/73
if A , then A =
-1 1 +1/3 2/3

1 1
2

If A

[]

-1
) , then A doesn't exist.

THEOREM 4.10: The following are equivalent, for nXn symmetric matrix A:
i. A7! exists
ii. no eigenvalue of A is zero

iii. {y € R"/(x € R") Ax = y} = R"
iv. All the column vectors of A are linearly independent.
v. All the row vectors of A are linearly independent.
Theorem 4.10 is stated without proof. However, an understanding of its
implications arises from remembering that the nXn matrix A also defines a
function £:R7->R" by f(x) = Ax. Thus, for A—l to exist A must be 1-1 and

onto. Part iii. says A is onto. If all of the columns of A are linearly

independent, then the n vectors Aei, where

0 th
e = é i  component (4.23)
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form a linearly independent set of dimension n, since each one is merely a

column of A. Thus part iv. says A is onto. Part v. says the same about AT,

an equivalent problem since

ah™t -t
R -1 .
if A ~ exists.

Let A be an nXn symmetric matrix with eigenvalues Xl,...,kn. They will
all be real in this case, since A is symmetric. If A is positive definite,
then xTAx >0 for x # 0. This is, in particular, true for any eigenvector
vi. Thus O < vi Av, =v. A, v, = A, (v, + v.), and this shows A, > 0,

1 1 1 1 1 1 1 1 1 1
since v, e vy > 0. Thus, positive definite matrices have positive
eigenvalues, positive semidefinite matrices have nonnegative eigenvalues,
negative definite matrices have negative eigenvalues, and, finally, negative
semidefinite matrices have nonpositive eigenvalues. These arguments go the
other direction as well (in the case of a square, symmetric, invertible

matrix), because generally we can write any vector x as a linear combination

of the eigenvectors

T n 2
so that x Ax = [} o A (v ev
i=1 i i

.)
i i

which is positive for all x if and only if all the eigenvalues Xi are
~ positive.
Generally, square matrices perform a job of rotating and expanding or

contracting vectors. Since we can write
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Ax moves vectors (except the eigenvectors) around, and it either lengthens

(IX] > 1) or shortens (|A]| < 1) then. Thus, if we use the eigenvectors as a

basis for Rn, A serves the role of only increaseng or decreasing the length of

the vectors.

When a rotation of the space is performed, as in Example 4.11, there are
no vectors which Ax maps to Ax (since they are all rotated away), at least in
Rn, and in this case, complex eigenvalues arise. Generally, with a complex
eigenvalue a + bv-1, the real part a describes the expansion or contraction of
the vector, while the imaginary part b describes the rotation of the whole
space. This will be further discussed in Chapter ?.

DEFINITION 4.5: f£:R'SR" is a linear function if Vx, y € R" and scalars «,
B

f(ax + By) = af(x) + BEf(y) (4.24)

THEOREM 4.11: f£:R'SR" is a linear function if and only if there is a mXn
matrix A, f(x) = Ax.

Proof: () Let a, = f(ei), that is, the ith column of A is f(ei). Then

f(x) = f(xl,...,xn) = f(xle1 + ... + xnen) = xlf(el) + ... + xnf(en) =
a x a X a X + ... + a X
11 1 In n 11 1 In n
a X a X a X + ... +a X
21 1 2n n 21 1 2n n
. + ... + . = . =
a x a X a X + ...+ a X
ml 1 mn ml 1 mn n
Ax.

(¢) Exercise.

Thus, the linear functions are precisely those that may be represented

by matrices.
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The theory of derivatives of real functions makes great use of the
notion of a tangency, that is, a tangent line to a function f at x is the
straight line passing through (x, f(x)) with the same slope as f at this
point. To generalize this notion, we must consider tangent planes. Consider
a function f:R29R, and visualize f(xlxz) as altitude; f(xl,xz) is the height
of a smooth piece of land (rolling hills, for example). At any point on the
land's surface, we can take a plane (a piece of plywood) and make it tangent
at this point.

The general description of a plane in R3 is

+ =
alx1 + azx2 a3x3 b

for scalars al, a., a_, and b. If a3 # 0, we can write this as

2 3
a a
b 1 2
X = = — e X - = X .
3 a a 1 a 2
3 3 3

Thus b/a3 is the planes "height" over the (xl,xz) axes (the plant x3 =

0), —al/a3 is the slope in the %y direction and —aZ/a3 is the slope in the X,

direction.

Thus, if a € R3 and b € R, we may express the formula for a plane as
a * x =Db.
Where a = (al, ay, a3) above. In an analogous way, the formula for a
line in R2 is

alxl + azxz = b, or

a * x =b.
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Thus, generally a "plane” in a higher dimensional space is described by the
formula
a*x=>»

for constants a € R" and b € R. The parameter b is the height of the

plane over (0,...,0) = 0, while «_ is the slope of the plane in the
i

direction xi. Such "planes"” are called hyperplanes, to distinguish them from
. 3
ordinary planes in R™.

Consider any two points x and y on a hyperplane. Then

a°*x=>»
a *y =bh,
Subtracting:

a *(x-y) = 0.
Thus, the vector o is perpendicular to any line segment x-y on the
plane. Thus, a plane is determined by a vector (which every line in the plane

is perpendicular to) and its height over a point (figure 1).

Suppose £:R™R and we wish to approximate f, at the point xo, by a
tangent hyperplane, that is, by a hyperplane in Rn+1 whose "height" (last
coordinate) over x° equals f(xo), and whose slopes in each direction are the
same at xo. Thus, the hyperplane must satisfy

X
n+l

a*XxX+b (definition of hyperplane)

@ -(x—xo) + B=D+ (« » xo)

a -(x—xo) + f(xo) (for height to be the same at xo).
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For the slopes to mateh up, ai must be the slope of f at x as we change
x, only:

0 0 0 0 0 0
f(x ,...x X+ A,X see.X ) - £(x )
1 i-1 i i+l n

i A0 A

of 0

X

Thus, as we shall develop more carefully in the next section, the
derivative of a function f£:R"SR defines the tangent hyperplane to f at Xq» and
is essentially a linear approximation to f at Xq- The hyperplane,
coming in the form a*x = b, is such that a is perpendicular to the
hyperplane. This provides a geometric intuition to the results of the next

section.

4.3 DERIVATIVES

If £:R5R, we have identified £'(x°) with the slope of f at x°. Thus, if
f:Rn*R, we can consider the slope of f as we vary one of the components of f.

For example, let g:R2R be defined by

0
g(xi) = f(xg,...,xg_l,xi,xg+1,...,xn) (4.25)

Then g:ROR is merely the function f, holding XpseoosX , X,

1-1 1+1,...,xn constant

at the values of xo while letting the ith component vary. We can take the
derivative of g in the normal way, and this leads to the notion of a partial
derivative, partial because we are accomplishing only part of the

differentiating of f (with respect to one component).
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DEFINITION 4.6: The partial derivative of f:RnéR with respect to Xy, at x €

Rn, is
f(x + Ae ) - £(x)
af (x) i
D £f(X) = e——— = lim (4.26)
i ox A0 A
i A#0

if this limit exists.

If all the partial derivatives exist, the gradient of f is the vector of these

partials:
of af
VE(X) = (— (x),..,— (X)) (4.27)
ax 9x
n
af
The gradient of f is called "del f" on occasion. Since --- is
ax
i

the slope of f in the direction e, the gradient summarizes the information

about how f is changing in the n directions e e . In a similar fashion,

1"

n -
we may take a derivative in any direction y € R provided y # 0. That is,

we consider the function g:R3R given by
g(\) = f(x0 + AY) (4.28)

so that g(A) is the value of f as we move in the direction y from x g is an

o
ordinary function of a real variable, so its derivative can be defined in the

ordinary way. Clearly g'(0) is the slope of f as we move in the direction y

from x .
0

DEFINITION 4.7: The directional derivative of f:Rn+R the direction

y # 0 is
f(x + Ay) - f(x )
0 0
f (x) = lim (4.29)

y 0 A0 A
A#0

if this limit exists.
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EXAMPLE 4.15: Define f:R SR by

1 X >0and x = x
1 2
fix ,x ) =
1 2

0 otherwise
See figure 4.2. f has directional derivatives in all directions at (0,0), but
is discontinuous at (0,0).

This example shows that, even if all of the directional derivatives

are defined for every direction y # 5, a function may fail to be continuous.
Thus, in some sense, the existence of directional derivatives is not very
useful, since it fails to guarantee continuity. A more productive way to
think about derivatives results from thinking of derivatives as local linear
approximations to f. If f:R»R, then for some §

[£(x) - f(x ) - £'(x )(x - x )|
0 0 ¢}

Ix-x | < & » ' | <e (4.30)
0 X - X
0

That is, f'(xo)(x—xo) approximates f(x) - f(xo) if x is close enough to X

f'(xo)(x-xo) is a linear function of (x—xo), and thus f'(xo) represents the
approximation of f by a linear function. If, instead, x € Rn,-a linear
function mapping R” into R is represented by a n X 1 matrix (or vector) from
theorem 4.11. Thus, we can define the derivative of f:R'SR as a linear
3 — = t . —
function L(x xo) f (xo) (x xo)
[£(x) - £(x ) - £'(x )o(x-x )|
0 0 0
lim =0 (4.31)

X% lIx—x |
(4} 0

lIx-x }|>0
0

if this limit exists. If‘f'(xo) exists for all x., f is said to be

Ol

differentiable.
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The notions of partial, directional and total derivatives (f'(xo) is

said to be the total derivative) are the same if f:R>R, since there is only

one direction in R. Note that, if f:Rn%R is differentiable, the derivative

of f is itself a function f'(xo) and f':Rn+Rn, since for each xo € Rn,

n
1

f (xo) ER .

EXAMPLE 4.16: f¢( ) = 2 + 3x.x, + x2
P10 X10¥%p? = % 1%2 ¥ %

of

—_— (X ,Xx ) = 2% + 3x

ax1 1 2 1

— (x ,x ) = 3x + 2x
X 1 2 1

If y = (yl,yz) is any direction.

2 2
£(x + \y) = (x1 Ay )T+ 3(x1 + Xyl)(xz *Ay,) 4 (x2 + Ay,
and
= + +

fy(x) 2x1y1 + 3x2y1 3x1y2 2x2y2
= (2x1 + 3x2, 3x1 + 2x2)°(y1,yz)
= VE(x) ey

£'(x) = Vf(x).

This example illustrates the results of the following theorem:
THEOREM 4.12: Suppose f:RnéR is differentiable. Then all directional

derivatives fy exist, and

fr(x) = Vf(x) (4.32)
fy(x) = £'(x)ey (4.33)
Proof: Since
of
—_— (%) = £ (%) (4.34)
ax e,
i i

it is sufficient to prove (4.33), and this implies (4.32). So fix a direction

¥y, and let x = X, + Ay. Then, by (4.31)
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[£Cx + Ay) - £(x ) - £ (x )e(Ay)]
0 (4] 0

lim =0
A0 Iyl
A#0

or, multiplying by Jllyll:
1
[£(x + Ay) - f(x ) - Af (x )ey]|
0 0 0
lim =0

A0 In]
A#0

It follows that

f(x + Ay) - f(x )
0 0 S
f (x ) = lim = f (x )y
y 0 A0 A 0
A#0

Proving (4.33). (4.32) follows since

of !
—(x ) =f (X)) =f (x )se
X 0 e 0 0

i i

1

Q.E.D.

Theorem 4.7 relates all of the notions of derivatives introduced so

far. If f is differentiable, f'(x) is just the vector of partial derivatives

VE(x). 1In addition, the derivative of f in the direction y is £'(x)e-y.

Because this changes scale with y (i.e. doubling y doubles the directional

derivative), it is sometimes useful to normalize for |ly|| = 1, i.e. define the

directional derivative in the direction y as £t (x)e(y/llyll) so that changes in

scale do not affect the directional derivative.

When n=1, we saw that if f is differentiable, then f is continuous.

This remains true.
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n
THEOREM 4.13: If f:R 2R is differentiable at xo, then f is continuous at xo.

Proof: Let ¢ > 0 and h = x—xo. From (4.13), 361 >0

]
[f(x +h) - f(x ) - f (x )+h]
0 0 0

O<|nll<s » <1 (4.35)
1 lInlf

€

Let § = min{d§ , ———m——}
1 1+ Hf'(xo)H

Then, if [lx-x Il = |Inll < &

J£(x) - f(xo)l = If(xo + h) - f(xo) - f'(xo)-h + f'(xo)°h| <

If(x0 +h) - f(xy) - f'(xo)-hl + |f'(x0)°h| <

[Inll + Hf'(xo)“”h” = (by 4.35 and cauchy schwarz)
(1 + lIf' (xIDIN < ¢ (since [[h]| < §).

Q.E.D.

This analysis is insufficient to differentiate the derivative of f:RnaR,
since f':R?*Rn. Thus, we should generally like a definition of derivative
which allows us to differentiate any function f:R™R™. We use our analysis of
linear functions to allow this extension.

DEFINITION 4.9: The derivative of f:R™SR™ at a point X, is a linear function
L:Rn->Rm satisfying

HE(x) - £(x ) - L(x-x )]
0 0

lim =0 (4.37)
X% Ix - x ||
0 0

X#X

if this exists. If f is differentiable at all xo, f is said to be

differentiable.
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Since linear functions have matrix representations, we can represent L
in (4.37) as an mXn matrix f'(xo). Let fi:Rn+R be the component functions of
f, so that

f(x) = (£, 00, £ (x),...,f (x)) (4.38)

1 2 m
THEOREM 4.14: f is differentiable if and only if all the component functions

of f are differentiable, and in this case

of (x) df (x) af (x)
1 1 1
9x X o X
1 2 n
af (x) of (x) of (x)
2 2 2
X ox o X
1 2 n
ft(x) . . . (4.39)
af (x) Of (x) af (x)
m m m
X X o ox
1 2 n

f'(x) is called the Jacobean of f at x.
Proof: Let the mXn matrix A represent f'(xo), and ai. the rows of A. Then,

by Theorem 3.16,

f(x) - f(x ) - A(x - x )

0 0 -

- converges to 0
lIx - xo"

if and only if, (Vi)

f (x) - f (x) —a ox-x)
i i 0 ie 0

T T converges to 0.
X - X
0

Thus A = f'(xo) exists if and only if
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If (x) - £ (x ) - a *(x-x)]
i i o0 ie 0
(V) lim =0 (4.40)
i xox Ix - x ||
(] 0

X#X
0

That is, f'(xo) exists if and only if all the component functions fi are
differentiable. Comparing (4.40) and (4.31), we see a., is Vfi’ by (4.32), or

af

i
a = — (X ).
ij X 0]
J
Q.E.D.

THEOREM 4.15: if f:Rn->Rm is defined by f(x) = Ax for an mXn matrix A, then
f'(x) = A.

Proof: We show A satisfies definition 4.8.

I£(x) - £(x ) - A(x - x )| lAx - Ax - A(x-x )|
0 0 0 0
lim = lim
XX fx - x |l XX lx - x ||
0 0 0 0
X#X X#X
0 )
. floll
= lim = 0. Q.E.D.
©x  lx-x ||
0 o
X#EX
0

2 2
EXAMPLE 4.17: Let f:R %R be given by

2 2 2 2
f(xl,xz) = (x1 - XX, + X, X - xz)

of
1

—_— 2Xx - x 2Xx - x

ax 1 2 2 1
2

f'(x ,x ) = =
1 2

of 2% 2x

2 1 2

ax
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THEOREM 4.16: If f:Rn*Rm is differentiable at xo, then f is continuous at xo.
Proof: Follows immediately from Theorem 4.14 and Theorem 4.1.
Q.E.D.

THEOREM 4.17: Suppose f:RnéRm, g:Fn+Rm are both differentiable. Then h:R SR™
defined by h(x) = f(x) + g(x) is differentiable, and h'(x) = f!(x) + g'(x).
Proof: Exercise.
THEOREM 4.18: Suppose f:Rn->Rm is differentiable and g:Rm->Rk is
differentiable. Then h:Rn->Rk defined by h(x) = g(f(x)) is differentiable, and
hi(x) = g'(£(x))f'(x).
Theorem 4.18 shows the value in the definition of matrix multiplication. To
find the derivative of the composite function g(f(x)), are merely multiples
the matrices g'(f(x)) and f'(x). This treatment of derivatives as local
linear approximations

f£(x) - f(xo) = f'(xo)(x—xo) (4.41)

where = means approximately equal to, allows a geometric intuition, when m=n,

so that f:RnéRn. In this case, f(x) - f(xo) is parallel to x-x, whenever f(x)

0
- f(xo) = X(x—xo) for some A, but this requires
f'(xo)(X—xo) 2 f(x) - f(xo) = X(x—xo)
and thus XX, is an eigenvector of f'(xo). It follows that we may think of f
as, at least locally for x near X,» as rotating and perhaps magnifying or
diminishing vectors x—xo, in the sense that f(x) - f(xo) is roughly a linear
function of X=X

Recall that, if £:RTR is differentiable, then its derivative f!(x) at a
point x is itself a vector in Rn, that is, f':Rn+Rn. Thus, if f! has a

derivative, which we'll denote by f"(x), this derivative is an nXn matrix. We

say f is twice continuously differentiable if every element of f"(x) is a
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af of th
continuous function of x. Since f'(x) = (5——ﬁ...,s—-), the i, j
x x
1 n

component of f"(x) (ith row, jth column) is

2
3 of 3 f(x)
_—(—(x)) = (4.42)
X Ix X ax
J i j i

However, if f' is continuous, then f" is symmetric (when it exists):

2 2
9 £(x) 9 £(x)

= (4.43)
9x 9x Ix Ix
i i i
or, equivalently:
£90x)" = £"(x). (4.44)

f"(x) is called a Hessian matrix.

2
9 f(x)
Since ———— is defined by
dx 9x
j i
2
9 f(x) 1 af
=lim - (— (x + ae ) - — (%))
ax 9x a0 a 9Ix j X
J i a0 i i
1
= lim - (lim - (f(x + ae_ + Be ) - f(x + ae )) -
a*0 a 20 B J i 3
a#0 B#0
lim - (f(x + Be ) - f(x)))
-0 i
B=0

1
=1lim lim — (f(x + ae + Be ) - f(x + ae ) -
a’0 B0 aB 3 i J
a#z0 B#0

f(x + Bei) + £(x))
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1
lim lim — (f(x + e + Be ) - f(x + Be )
20 a0 aff 3 i i
B#0 a#0

- (f(x + aej) - £(x))

1 1
- lim [-(f(x + Be + ae ) - f(x + Be.))

= lim
B0 B a0 a i 3 i
B0 a#0

1
- - (f(x +ae ) - f(x))]
o J

2
1 of af 3 f
=lim - [— (x + Be ) = —(x)] = (4.45)
B>0 B ax i X ax 9x
B»0 J J 13

THEOREM 4.19: Suppose £:R"SR is twice differentiable, and define g:RR by

g(\) = f(x + \y) (4.46)
Then g'(A) = f'(x + Ay)ey (4.47)
and g"(\) = ny"(x + Ay)y (4.48)

Proof: (4.47) follows immediately from (4.29) and Theorem 4.12.

1
lim -(g'(A + @) - g'(N\))
a¥ a
a#0

g (\)

(4.47)

1
= lim —(y*f'(x + Ay + ay) — yef'(x + AY))
a0 o
a#0

1
=ye lim -[f'(x + Ay + ay) - f'(x + Ay)]
a0 o
a#0

= ye(f'"(x + AY)y) = ny"(x + \Y)y Q.E.D.
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Thus, as an immediate consequence of our second order approximation of
real valued functions

g(1) = g(0) + g'(0)1 + %g"(B)1°

for some 0 < B < 1, we have
f(x+y) = £(x) + £'(x)*y + %ny“(x + By)y
This required g" to be continuous. Thus, we have shown:

THEOREM 4.20: Suppose f:Rn+R is twice continuously differentiable. Then

there is a B € [0,1] so that
f(z) = £(x) + £'(x)*(z-x) + %(z—x)Tf“(Bz + (1-B)x)(z-x)
(B depends generally on x and z).
DEFINITION 4.10: f:R MR is concave if ¥x, y € R” and VA € [0,1]
(O + (1-My) > Mx) + (1-Mf(y)
This definition compares immediately with Definition 2.8, as capturing the
same notion. As a result, we obtain the analogous Theorem:
THEOREM 4.21: Suppose £:R™IR is twice continuously differentiable. Then the
following are equivalent:
i). f is concave
il). £(x) £ £(y) + £ (y)*(x-y)
iii). f"(y) is negative semidefinite
Proof: This theorem's proof is virtually identical to the proof of Theorem
2.23
DEFINITION 4.11: f£:R'SR is convex if Vx, y € R" and A € [0,1]
£ + (1-M)y) < AM(x) + (1-M)E(y)
THEOREM 4.22: If R'OR is twice continuously differentiable, the following are

equivalent:
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i). f is convex

ii). -f is concave
iii). £(x) > £(y) + £'(y)(x-y)

iv). f" is positive semidefinite
Proof: (i) iff (ii) follows directly from the definitions 4.9 and 4.10, while
the equivalence of (iii) and (iv) follows immediately from Theorem 4.16.

Q.E.D.

One interesting aspect of concave or convex functions is the sets they define.
DEFINITION 4.12: A C R" is convex is VYx, y € A and VA € [0,1],
Ax + (1-A)y € A.

Thus, the set A is convex if, for all x and y in A, the line segment
connecting x and y is also in A (see figure 4.3 a,b). Ax + (1-M)y is called
a convex combination of x and y for 0 < A < 1.

EXAMPLE 4.18: Recall that, if x € Rn represents consumption and p € R"
represents prices, a person with income y to spend can purchase any bundle x
satisfying p*x < y. Show {x/pe-x <y} is a convex set.

Convex sets are intimately related to concave (and convex) functions, as
the next theorem shows.

THEOREM 4.23: If f:R'SR is concave, then (Vb € R) {x/f(x) > b} is convex.
If £:R7SR is convex, {x/f(x) < a} is convex for all a € R.

Proof: Let x, y € {x/f(x) > b} so that f(x) 2 b and f(y) > b. Then, for
0<\<1:

fOx + (1-M)y) > M(x) + (1-A)f(y) > Ab + (1-A)b = b

so Ax + (1-M)y € {x/f(x) > b} as desired. The second assertion has a
similar proof.

Q.E.D.
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Consider any f:Rn*R. In what direction is f(x) constant, starting from

a point xo? This requires, as A gets small:

f(x0 + AZ) = f(xo)

1
or lim —-(f(x + Az) - f(x )) =0
A0 M 0 0

or f'(xo)'z =0

That is, the surface {x/f(x) = f(xo)} is defined by orthogonality to
f'(xo) (see figure 4.4). Or, put another way, the level surface
{x/f£(x) = al is perpendicular to f'(x), that is, f'(x) points directly away
from any vector z so that f(x + \z) is approximately constant (as A\»0).
Thus f'(xo)-(x—xo) + f(xo) defines the tangent hyperplane for f at xo.
This analysis extends to increases or decreases in f. When does a small

movement in the direction z increase f? Whenever

d
— f(x + A\2) >0
da
A=0
or
f'(x)*z > 0.

Thus, small movements in directions that are within 90o of f'(x)
increase f, while movements in directions more than 90o from f'(x) decrease f
(figure 4.5). Thus f'(x) points in the direction of increasing f. If f:Rz*R
describes a hill (f(xl,xz) is the height of the hill, given coordinates
(xl,xz)) then the vector f' points up the hill (toward the peak). The level
curve {x/f(x) = a}l is the set of points of altitude a, and, as was argued, if

f!(x)*z = 0, then heading from x in the direction z means staying at a

constant altitude. Generally, we see that directional derivatives f'(x)-y
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summarize the local change in f if we head from x in the direction y, either
up (£f'(x)*y > 0), down (f'(X)*y < 0) or the same (£'(x)y = 0).

By Theorem 4.21, concavity of f is equivalent to:

f£(x) < £(y) + £1(¥)*(x-y)

Suppose Az

x-y is orthogonal to f£'(y). Then concavity asserts

f(y + Az) < f(y) + £'(y)*(Az) = £(y)
That is, movement from y in the z direction reduces f (figure 4.6). Another
way of putting this is that {x/f(x) > f(y)} lies totally on one side of the
hyperplant defined by ‘

{y + z/£'(y)+z = 0}.

Note, from (4.48) and (4.18) that concavity is also equivalent to:

f'(x + Ay)*y decreases in A
Since f'(x + Ay)e*y is the change in f as we move from x in the direction Y,
concavity forces this change to decrease as we move further away (A
increases). Now suppose f'(x)+z = 0. Then concavity requires

3
— f'(x + AzZ) ez <0
-}

A=0
That is, the angle formed between f'(x + Az) and z is greater than 90° for

A > 0. This is illustrated in figure 4.7.

4.4 0dds and Ends
In this section, we present a grab bag of results useful in later

chapters.
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LEMMA 4.24: x°y is a continuous function of x,y.

Proof: Let ¢ > 0 and fix x Let

o’ Yo
/3 /3 :
]
1+lx I 1+lly ||
0 0

§ = min {1,

Then, if Hx—xou < § and Hy—yoﬂ <38

Iey — %oyl = [G=x) 2 (y=y) + X °(¥-¥o) + yy* Ge=x )| <

I(x_xo).(y_yo)| + |x0.(y-yo)| + |y°-(x_xo)| < (cauchy-schwarz)
e=x il Ny-yolt + lixpll Nly-yoll + Uyl llx-xil <

Ix | e/3 y Il e/3
c/3 0 0

S T TE e Ty
1+]ix 1 + ||x + |ly
0 0 0

< €/3 + /3 +¢€/3 =c¢.

Q.E.D.

DEFINITION 4.13: A C Rn is compact if, for every sequence x € A, there is

(n) converging to some xo € A. Subsequences delete terms of

the original sequence: if j(1) < j(2) < j(3) < ..., then xj(l)’ xj(2)""

a subsequence xj

is a subsequence.
EXAMPLE 4.19: Let X, = (-l)n. the alternating sequence -1, 1, -1,... . Then
one subsequence which converges is every other term: j(n) = 2n, so the

subsequence x2, x4, X converges (since it is constant at 1).

60"
THEOREM 4.25: A C Rn is compact if and only if A is closed and bounded.
Proof: () By contrapositive, we show if A is not closed or not bounded, then
A is not compact. If A is not closed, there is a convergent sequence x
converging to X, ¢ A. But this implies every subsequence of X converges to
xo ¢ A, and thus A is_not compact (see Exercise 25). If A is not bounded,

then for each n € N, 3 X €A, Han > n. This defines a sequence which

has no convergent subsequences (exercise 26) and thus A is not compact.
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(¢) Suppose A is closed and bounded. Let x be a sequence in A. By an Rn
version of Bolzano-Weierstrauss (proof is similar to proof of theorem 2.7)
there is an xo so that, for any ¢ > 0, infinitely many members of the

{xn/n=1,2,...} satisfy len - xou < €. But, then, this means for any

natural number m, we may choose an n > m with Hxn - xou < ¢. Define the

subsequence as follows. Let xj(l) = xl. Given xj(k)' choose an n so that n
> j(k) and
Hxn - on < 1/k+1. This n = j(k+1). Clearly the subsequence xj(k) converges
to xo, and since A is closed, xo € A.

Q.E.D.

THEOREM 4.26: Suppose f:Rn+R is continuous and A is compact. Then
% %
Ix €A, (Vx€A) f(x) > £f(x).
Proof: Let a = sup{f(x)/x € A}. Then, by Theorem 2.11, there is a sequence

of f(xn)+a, with xn € A. Since A is compact, there is a convergent

%
subsequence xj(n)+x € A. Thus, by continuity of f:
*
f(x ) = £(lim x ) = lim f(x_ ) = a
no j(n) n-o i(n)

Q.E.D

DEFINITION 4.14: f£:R “R" is a contraction mapping if 3r, 0 < : < 1,
¥Yx, v € Rn
ey - £l < Mix-yli
n._n., . s * n

THEOREM 4.27: 1If f:R >R 1is a contraction mapping, then 3I!'x € R,

% *
f(x ) =x .
Proof: The proof is left as an exercise, with the hint to examin the proof of

theorem 2.26.
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EXERCISES
1.  Show £( ) = x2 4 2% x, + x> i £
. ow f(x,.%,) = x; X, X, x, is continuous.
2. Show that fi(x) = xi. X € Rn, is continuous.
3. If £f(x) = Ax for mXn matrix A, show f is continuous.
4. If £:R™9R is given by f(x) = xTAs for nXn matrix A, show f is continuous.
S. Prove Theorem 4.2.

6. Prove Theorem 4.6.
7. Show that any interval (a,b) = {x/a < x < b} is open, and any interval
[a,b] = {x/a < x < b} is closed.

8. Show, in example 4.4, N A = {0}. Prove {0} is not open.

ier i
9. Prove any finite set of real numbers {al,...,an} is closed and not open.
10. Prove that the only clopen sets (both open and closed) in Rn are 0 and

Rn. That is, show that if A C R is open and closed, A = 0 or A = R.

Hint: wuse the contrapositive.

11. Prove Theorem 4.6.

12. Show by example that if £:R™>R" is continuous and B is closed, f_l(B)
may not be closed. (Hinte: Let n =m = 1 and draw a picture of the
function).

a a
11 12 .
13. Show the 2X2 matrix is invertible if and only if
a a
21 22
211%2 " %1% * O
14, Prove (4.11)-(4.14).



15.

le.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.
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Prove, if A and B are nXn symmetric matrices that AB is symmetric.

For general 2X2 matrices, characterize the conditions making them
- R - st T, _ 2

positive semidefinite. Hint: note x Ax = 3,1% + (a12 + a21

2
+ 2,,%,- When is this always at least zero?

)xlx2
Show that, if A is an nXn symmetric matrix, and P is the matrix whose
columns are eigenvectors of A, then P—IAP is a diagonal matrix: all the
elements of the diagonal are zero, and the diagonal elements are the
eigenvalues of A.

Find the partial derivatives of

f(xl,xz) = xi + 2x1x2 + xi

Find the level curves of this function.

Carefully prove that the function in Example 4.15 is discontinuous at
(0,0), but all directional derivatives exist at (0,0).

if f:Rn+R is given by f(x) = xTAx for nXn matrix x, show

£1(x) = Ax + A'x

Show f"(x) = A + AT, and that it is symmetric.

Prove Theorem 4.16 directly, without using Theorem 4.14.

Prove Theorem 4.17.

Prove Theorem 4.21.

Prove Theorem 4.27.

then every subsequence x,

Show that if a sequence x_ converges to x
n j(n)

o’
converges to xo.

Show that, if, for all n, "xn“ > n, no subsequence of x ~converges.



