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3.1 VECTOR SPACES
A vector space is a set X, along with two operations on members of X.
Definition 3.1: X is a real vector space under @ and © if, (Vx€X)(Vy€eX)

(Vz€X) (Va€R) (VBER) the following properties hold:

x@Py €X (3.1
XPDYy =yPx (3.2)
x®Y)Dz=xDyD2) (3.3)
(30€X) x®O0 =0 (3.4)
(VXEX(IWER xDw =0 (3.5)
a®x € X (3.6)
@(xDy) = (a®x) @ (a®y) (3.7)
(aB)®x = a@XBEX) (3.8)
(a + B)®x = (o®x) D (BOx) (3.9)
6% = x (3.10)

P is referred to as addition of vectors, while ® is called scalar
multiplication. Generally we shall write A®x as Ax in what follows.
The symbols @ and © are chosen to remind the reader that ) and ® are

i
abstract versions of additionatdfs multiplication. Effectively, properties
(3.1)-(3.10) are the only properties we'll need for addition and

mulitiplication, at a very abstract (and hence very generally applicable)

level.



EXAMFLE 3.1 X = {0}

Define P, ® by
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.. It is easily established that {0} under +, * is a vector space,
easily Y

T

—

“the most trivial.

EXAMPLE 3.2 X = R°, with

(xl,...,xn) + (yl,...,yn) = (x1 +y

X(xl....,xn) = (Xxl,....kxn)

- +
1’ *n yn)

0 =(0,...,0)

These are the usual definitions of + and ¢ for vectors.

EXAMPLE 3.3 Let C[0,1] be the set of continuous functions f: [0,1]-R.
For f,g € ¢ [0,1],

(f @ g)(x) = £(x) + g(x)

O\OE) (x) = Af(x)

Finally, the zero function satisfies 0(x) = O.

As these examples illustrate, X being a vector space requires defining

the operations addition and scalar multiplication. In example 3.1, these took
on unusual meanings. Basically, since 0 is the only element, we may satisfy

all of the properties by defining every operation to yield 0.



Properties (3.1) and (3.6) require that addition of vectors (as elements
of X will be called vectors) and multiplication of vectors by scalars results
in vectors. (3.2) is commutativity: order is irrelevant. (3.3) is
associativity: when addition is to be performed twice, we may perform either
addition first. (3.4) requires the existence of a zero element. (3.5)
provides subtraction. To see this, consider

zZ-x=Yy
to mean

z = y@® x.

Since there is a w satisfying

X@w=0
we have y = z ® w, since

(3.3) (3.5) -~ (3.4)
CEPOW Dx=zBHWDx) = zHO0 = =z

Thus, (3.5), by forcing w to exist, allows us to subtract x by adding w. 1In

addition

THEOREM 3.1: 0®x =0

(3.9)
Proof: From (3.9) O@x = (0+0)Ex = 0éx P OCX

Now let y satisfy O&x ®y = 623wg%ch exists by (3.5). Then
0=0x@y = (XX Dy = 0@ (00x ®y) = 00x DO = ©x

as desired.

From this result, we see immediately that (-1X*x is the w of (3.5), since

0 = Ox = (1+(-1)x = 10x & (-1)@x (3.11)

Because of (3.11), we shall refer to (-1)®x as -x, noting

xD(-x) =0 (3.12)



Example 3.2 gives a general version of vectors in the plane, the case
n=2. A vector x = (xl,xz) is viewed as an arrow from the origin to the point
%X (see figure 3.1). Vector addition is accomplished by starting the vector y
at the termination point of x, so that one has added the two arrows. Scalar
multiplication merely extends the vector (see Ax in figure 3.1).

The value of such an abstract definition of addition and scalar
multiplication is illustrated by example 3.3. The space of continuous
functions is not very similar to Rn, and yet both are vector spaces.
Consequently, any properties we can prove about vector spaces in general apply

equally to both examples. The operations of addition and scalar

multiplication in C[0,1] are illustrated in figure 3.2.

3.2 Inner Product Spaces

Suppose X = (xl,...,xn) is the consumption bundle discussed in Section

1.2, and p = (p .,pn) are the prices of these goods. Then

'

represents the expenditure on these goods. The notation psx (which the reader
should not confuse with scalar multiplication of the previous section) for
Zz_lpixi is an example of a quantity called an inner product or dot product.

Definition 3.2: Let X be a vector space. A function f: X x X » R is an

inner product if YX€X Vy€EX VAER
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f(x,x) >0 (3.12)
£(x,x) =0 IFF x =0 (3.13)
f(ax,y) = AM(x,y) (3.14)
f(x,y) = f(y,x) (3.15)
f(x+y, z) = £f(x,z) + f(y,z) (3.16)

Generally, we shall denote inner products by f(x,y) = <x,y>. This
chapter will only concern inner product spaces, and we shall assume all

vectors are members of inner product spaces.

n
EXAMPLE 3.4: For X = R and vector addition and scalar multiplication as in

example 3.2, and for @ LSRR real, positive numbers <x,y> =
n . .
Xi=1aixiyi is an inner product.

In particular, for @ =a, = ... =a = 1, the dot product

Xey = X2=1xiyi is an inner product.

EXAMPLE 3.5: For the example 3.3 vector space, and for any continuous

function «: [0,1] =+ (0,»), <f,g> = I;f(x)g(x)a(x)dx is an inner product.
Inner products are a kind of vector multiplication (which is why they

are called dot products on occasion), but the outcome of this kind of

multiplication is a real number.



THEOREM 3.2 (Cauchy-Schwarz inequality):

<X,¥> £ V<X, x<y, 7> (3.17)

Proof: Note (3.17) is true if x = 0 or y = 0. So suppose X # 6 and y # 6.

(3.12) (3.16) (3.14)
0 < <ax - By, ax - By> = <ax, ax - By> + <-By, ax + By> =
(3.15) (3.16)
a<x,ax — Bu> - B<y, ax - By> = a<ax - By, x> - B<ax - By, y> =
(3.14)

a(<ax,x> + <-By, x>) - B(<ax, y) + <-By, y>) =

(3.15)
2 2
a <X,x> - af<y,x> - Ba<x,y> + B <y,y> =

2
a <X,x> - 2aB<x,y> + Bz<y,y>.

Now let a = V<y,y>, B = vV<x,x>. Then

0 < <y, ,y><x,x> - 2J<x,x> Yy, y> <xX,¥y> + <x,x><y,y>

or, dividing by 2vkx,x> v<y,y>,

0< V<x,x><y,y> - <X,y> Q.E.D.

COROLLARY 3.3: For scalars a«, B:
<ax + By, ax + By> = a2<x,x> + 2aB<x,y> + Bz<y.y> (3.18)
|<x,y>| € <x,%x><y,y> (3.19)
The equation (3.18) is the first step in the proof of Theorem 3.2, while

(3.19) follows from 3.18 with -y substituted for y.



For Rn under the euclidean dot product:

Xy = Zn x.Y, .
i=1"171

The Cauchy Schwarz inequality reduces to

n 2
(Y xy) <2 x) (I yv) (3.20)
i=1 11

Define the norm of x by
lxll = vV<x,%x> (3.21)
Norms may be thought of as length, since, for the plane under the

euclidean dot product:

H(xl.xz)ﬂ R (3.22)

1 2

which is the usual notion of the length of the line segment ccnnecting (0,0)
to (xl,xz) (see figure 3.3) by the pythagorean theorem.

Any norm, or notion of length, must satisfy three properties given in
the following theorem.

THEOREM 3.4: [|Ix]| = v<x,x> satisfies

i), x#0=>|xjl >0 (3.23)
ii). ¥ :A € R |ixaxll = Inixl w (3.24)
i), e+ vl < Wxll + iyl (3.25)

Proof: 1i). follows immediately from (3.12) and (3.13)

(3.21) (3.18) (3.21)
Ixll = v = Axs = vAS v = A il

Note the Cauchy Schwarz inequality can be expressed as:

<x,y> < lixil iyl (3.26)
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forcing

2 2
<x, x> + 2<x,y> + <y,y> < =i + 2=l lyll + lyll
or

2
<x +y, x+y>< =it + {lylD

or

fIx + yll < lIxll + liyll Q.E.D.

Equation (3.23) states that the length of a vector x (or, equivalently,

the distance from x to 0) is positive unless x = 0. (3.24) forces that,

as we scale a vector up by a factor A, the length of the vector increases

accordingly. Finally, (3.25) says that the distance from 6 to x + y is not
longer than the distance to x plus the distance to y. For this reason, (3.25)
is sometimes called the triagle inequality, since it is shorter to go directly
from zero to x + y rather than go by way of x (figure 3.1 illustrates this).

Going to x + y by way of x requires travelling two sides of the triangle

formed by 0, x and x + y.
When is it no extra distance to go by way of x? The next theorem

answers this:

THEOREM 3.5: llx+yll = lIxll + llyll if and only if <x.y> = v<x,x><y,y> if and

only if x = 0 or y = Ax for scalar A > O.



Proof: Examining the proof of Theorem 3.4, equation (3.26), we see that

<x,y> = |xl| Iyl iff
2 2,
<X, %> + 2<x,y> + <y,y> = |IxlI” + 2 Hx|l llyll + lyll™ iff

=l + Uyl

This establishes the first equivalence.

Hx+yll

]

Now, examining the proof of Theorem 3.2, we see that if x=0 or y=5

(the latter meaning y = 0x), the Cauchy-Schwarz inequality holds with

equality. If x # 6 and y # 6, the only way the Cauchy Schwarz holds with
equality is
0 = <ax - By, ax - By>

which, by (3.13), requires

0 = ax - By

Y,y>
<X, x>

a
or y = Ex. Letting A = > 0, we are done.

>R

Q.E.D.
Theorem 3.5 gives the nice result that the only time the distance from
6 to x+y equals the distance from O to x plus the length of y is when x is

along the vector from O to x + y, i.e. x +y = (1 + N\)x.

LEMMA 3.6. If y and z satisfy (VX)<x,y> = @ & <x,z> = 0
Then 3N€R z = Ay 325

Proof: Case i}: Then, by (3.14), (¥x) <x,z> = 0. Thus, in particular,

<z,z> = 0, and by (3.13), z = 0 = Oy.

Case ii). y # 0. Consider
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<y,z>
X =2 - y
<Yy.y>
<y,z>
<X,y> = <z,y> - <y, y> = 0
<y,y>
Thus
<y,z>
<X,z> = <z,z> - <y,z> = 0
<y,y>
or
2

<z,z2><y,y> - <y,z> = 0.

By theorem 3.5, 3AER

Z = AY. Q.E.D.

In words, we have that, if everything perpendicular to y is also perpendicular
to z, then y and z are parallel.

LEMMA 3.7: If y,z satisfy (¥x) <x,y> < 0  <x,z> < 0, then 3\ > 0, z =
Ay.

Proof: First, we show the hypothesis of Lemma 3.6 holds.

Suppose <x,y> = 0. Then <-x,y> = —<x,y> = 0.

<xX,y> =0 3 <%x,y> < 0 > <x,z> <0

<-X,y> = 0 » <-x,y> £ 0 » <x,z> = <-x,z> < 0, or <x,z> > 0. But this
implies <x,z> = 0, and Lemma 3.6 applies, yielding z = \y.

We now show \ > O.

If y = 0, then (V¥x) <x,z> = 0 » <z2,2> =0 2> z = 0 and A = 0 works.

If y # 0, <-¥,y> = <¥,¥> < 0 ? -MNy,¥> = <y,Ay> = <-y,z> < 0

Thus -\ < 0, since <y,y> > 0, or A > 0 as desired. Q.E.D.
Theorem 3.8
Hixll = Nyl < lx + yll (3.27)
Hisell - iyl < fix - vl (3.28)

Proof: Let b

-y and a = x + y. Then

A

xll = lla + oll < llall + bl = fx + yll + ll=yll = lx + yil + liyli.
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Thus
el = liyll < lx + yil.
Analogously,
Iyl - flxll < lix + yll
or
l=lt — fiyll = - diyll - Uxl) > - lIx + yll.
Thus
=l + oyl < Ml - Hiyll < lx + yll
or
Hixll - fiylll < lIx + yll
(3.28) is (3.27), substituting -y for y. Q.E.D.
The final property of norms to be established is the parallelogram law:
THEOREM 3.9:
e+ y1% + i - v = 20 + Iyl (3.29)
2 2 (3.21)
Proof: Jlx + y|l + /lx - yll =
(3.18)

X+Y, X+ Y>> +<X~-Y, X —-YyY>=
<X, X> + 2<X,¥> + <Y,¥> + <x,x> - 2<x,¥> + <Y,¥y> =

(3.21) 2 2
2(<x, x> + <y,y>) = 2(Ixll + lyll ) Q.E.D.

The parallelogram law will be used in Chapter 5, and is illustrated in
figure 3.4.

In this section, we have derived a number of properties of norms. The
motivation for this is that the norm is the notion of length. The euclidean

norm

n 2
"(xlt"':xn)" : Vzi=1 xi

is exactly the us.al notion of length arising (at least for n=2 or n=3) from
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the pythagorean theorem. Because ||x|| can be interpreted as the length of

the vector from 0 to the point x, and hence the distance from 0 to x,

generally we may consider [|x-y|| as the distance from y to x. Thus, we have
succeeded in defining the notion of distance between two points in any vector
space. This is a significant gain in generality over distance in Rn, because,
as we will see in later chapters, there are other vector spaces of interest to
the economist.

One vector space of essential interest was described in example 3.5.
Consider a firm which must choose it's level of investment I(t) for each point
in time t. This firm, then, is choosing a function I: R-R. Thus, if we are
to make headway in solving any investment problem, we must have some knowledge
of the properties of spaces of functions. Thus, it is of use to know
continuous functions form a vector space under the norm
el = creeeran®.

This will allow many of our optimization results of chapter 5 to extend beyond
maximization in R".

At the same time, the reader is cautioned that it is very difficult to
obtain a geometric intuition for these results, beyond their application in
the plane. Thus, it is often useful to translate each theorem into the two
dimensional special case. In the next section, we take up the geometry of

vectors, inner products and norms.

3.3 The Geometry of Inner Product Spaces
Consider any inner product space X. For x, y € X, we consider the

distance between x and y to be ||x-y||l. Thus, from (3.25)
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Ix-zll < llx-yll + Hy-zl (3.30)

That is, the distance from x to z is no more than the distance from x to y
plus the distance from y to z. This is certainly required, since one way to
get from x to z is to first go to y and then go from y to z.

The use of the symbol || || is to remind the reader that norms work like
absolute value | |. Thus, while we may be dealing with very complicated or
abstract vector spaces, we can remember the properties of norms by their
relationship to absolute value. In particular (3.23), (3.24) and (3.25) are
all satisfied by absolute value, and this is the R" case, for n=1.

Further intuition is gained by considering inner products to concern
angles. Consider figure 3.5. The vectors x, y and x-y are arranged to form a
triangle. From the well known pythagorean theorm, if the angle a is 900,
then the length of x squared plus the length of y squared equals the length of
x-y squared, that is
Ixh? + Uyl = fe-yll?.

By definition, this means

<X, x> + <y,y> = <x-y, x-y>,

or, by (3.18)

<X,x> + <y,y> <X, X> ~ 2<x,¥y> + <y,y>

or
0 = -2<x,y>.
Thus, when <x,y> = 0, the vectors x and y form a right angle. 1In this case,

they are said to be orthogonal.

In a similar vein, if the angle a < 90°, then

2 2 2
Ix-yll= < lI=ll® + Hyll”.
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But this forces, as above:
0> -2 <x.y>
or

<xX,y> > 0.

Finally, since the case of o > 90° is similar, we have proved
THEOREM 3.10: The angle formed by x and y equals 90° if <X,y> = 0, exceeds
90° if <X,¥> < 0 and is less than 90° if <x,y> > 0.

Inner products concern angles, in the sense that the sign of <x,y> (0,
positive or negative) informs us of the type of angle (right, acute or
obtuse). However, the units of <x,y> are denominated in areas, that is,

<x,y> is telling us something precise about the area of the parallelogram

formed by 0, x, x+y, y. This is shown in the following theorem.
THEOREM 3.11: The parallelogram formed by the points 0, x, x+y and y has an

area equal to

P = V<x,%<y,y> - <xF>’§ (3.31)
Proof: Consider a triangle with sides of length a,b,c. In general, the area
of this triangle is:

A =176 v2(a®b? + a? ¢? + v%e?) - @@ + p% 4 &Y (3.32)

This is easily established by dropping a perpendicular from a to the line
segment connecting b and ¢, and using the pythagorean theorem to find the

length of this perpendicular (whose length, times %c, is the area of the

triangle).

Now consider the triagle formed by 0, x and y, with sides of length
Ixll, llyll, and [|x-y]|]. sSubstituting into (3.32), we obtain half of (3.31).

However, the triangle is half of the parallelogram, by symmetry.

Q.E.D.
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Theorem 3.9 demonstrates that the cauchy-schwarz inequality, suitably
rewritten as
V<X, X<y, y> ~ <x,y>2 >0 (3.33)

refers to an area, and is merely the expression that, suitably measured. areas

can not be negative. In addition, we see that <x,y> is effectively measuring

the deviation of the 0, x, y, x+y parallelogram from a rectangle. As the

parallelogram’s angle at the origin becomes smaller, holding the lengths of
the sides (|x]l and [lyll) constant, its area decreases and <x,y> increases.
This is illustrated in figure 3.6.

Thus, our analysis of vector spaces has taken two very ordinary notions,
of parallelness and perpendicularity and found a general expression for these
in terms of an inner product. To summarize, x and y are parallel if there is
a scalar M so that y = Ax, and this occurs when <x,y> = [Ix]lllyll. In
addition, x and y are perpendicular if <x,y> = 0. 1In this case, the
pythagorean theorem holds, and llxll2 + Hy"z = Hx-y"z.

The alert reader may note that, in this section, the analysis went
"backward,” as we started with intuitive notions (right angles,
perpendiculars, parallelness) and figured out what the inner product says
about these notions. A more formal, but less intelligible, treatment would
start with the inner product, since it was axiomatically developed
independently of our understanding of the plane, and then show that the
concepts so developed correspond to our understanding. Such a treatment
begins with:

Definition 3.3: x and y are orthogonal if <x,y> = 0.
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THEOREM 3.12 (Pythagorean Theorem): If x and y are orthogonal, lell2 +

2 2
Iyll™ = llxe-yil™.

DEFINITION 3.4: x and y are parallel if x = 0 or (3A€R) Yy = A\Xx.

THEOREM 3.13: x and y are parallel if and only if <x,y> = |Ix|| llyll.

3.4 BASES

The study of bases concerns finding an economical means of expressing
vectors in an inner product space.
DEFINITION 3.5 Let X be an inner product space. B C X is a basis for X if

every x € X, there is a unique set of scalars av so that

X= 3 av
VEB v

DEFINITION 3.6: A set of vectors B is linearly independent if the only

solution (for scalars av) to:

is (VvGB)(cv = 0).

otherwise, B is linearly dependent.

EXAMPLE 3.6: Consider vectors in Rz, with the inner product of example 3.4.
Then two vectors (xl, xz) and (yl, yz) are linearly independent if

a(xlt xz) + B(Yl, y ) = (0,0)

2

implies a = 8 = O.
This, in turn, is equivalent to
axl + Byl =0

0.

axz + Byz

Multiply the first by x_, and the second by x_, to obtsin

2 1
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ax + X =0
%2 *BYy%,

axlx2 + Bxly2 =0

and thus

B(ylx2 - xlyz) = 0.

Similarly, obtain

ax + =0
Yo B,

aylx2 + Byly2 =0
foreing
- ) = 0.
abny, - ¥y%,

Thus, either a = B = 0 or x = 0. However, if x - ¥ix%, = 0, the

12 ~ ¥1%; 1¥2

vectors (xl, xz) and (yl. y2) are parallel.

Thus, in the plane, x and y are linearly independent if and only if they

are not parallel.

THEOREM 3.14: If B is a basis for X, B is linearly independent.
Proof: By contrapositive. Suppose B is linearly dependent. Then there are

scalars av, not all zero, satisfying

I a v =0,
vEB v

Since not all are zero, there is a v € B with a # 0. Let:

o v
o
] V#EV
o
B =
v 1 vV =y
(o}
- vV #V
v o
'Y =
\'4 0 vV =yv
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Then
v = 3 B v= Y Yy v, which provides two expressions for v ,
o VEB v vVEB v 0o
contradicting the uniqueness of expression in a basis. Q.E.D.

We shall return to the analysis of bases and linear independence in the
next chapter, in terms of functions. However, we find one theorem relating
inner products and bases of use.

Definition 3.7: B is an orthonormal basis for X if B is a basis of X and

1 u=yv
Yu,vEB <u,v> =

THEOREM 3.15 (Gram-Schmidt): Suppose X has a countable basis. Then X has an

orthonormal basis.

Proof: Let B = {bl’ b2. b3,...} be a basis for X.
Define
v. =b
1 1
and
<b , v >
n-1 n i
VvV = - —_—y n=2,3,
n n izl <v , v > i
i i
v
n
Finally, define y =
n v
n
v v <v , v >
n n n n

Note <y , y > =
n n



19

Further, for n # m

<v , VvV >
n m
<Y , ¥> = ————
n m v | fiv |
n m
50 we need only establish that n # m » <vn, vm> = 0, and then show
{yl, yz,...} is a basis.

Suppose, for an induction, that <vi, vn> = 0 for all i < n. This is

true, trivially, for n = 1. Then, for i < n+l B

\ <b »V > o
n n+l j i
14/ s, V> =<b - v,V >
n+l i n+l j=1 <v _,v> j i
J J
<b Vv > <b sV >
n+l i n n+l j
=<b L, V> —— XV D>~ ] — v ,v>
n+l i <v_,v > i i j#i <v ,v > j i
i i i3

= 0.
{yl, yz,...} is linearly independent. Consider

lay = 0.

J 3
Then
. = &, <Y,,¥.> = . <Y,,¥.> = <a.y. D =
@, = a.<y.,y, ZaJ PR A ZchJ. Y,
<0, y > = 0.
i

Thus all ai's are zero, and the set is linearly independent. Since

{b b,,...} is a basis:

1 72
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<b_,v >
n-1 J 1
2 a (Vv + )} —m v.)
J 3 3 i=l <v ,v> i

1 1
<b ,v >
i
=Y (a + J a —) v,
J ] i>j igv ,v> ]
i
<b ,v >
i3
=) e, +3F o ——)v IDly,
J J i>j i <v ,v > J 3
i3
=)YB.y
J 33

Uniqueness of the expression of x follows from linear independence.
Q.E.D.

Thus, inner product spaces with a countable basis have the nice property
that the vectors can be expressed as tuples. If {yl, Y ,...} is an
orthonormal basis for X, than any x € X can be written as

x =1 By,
and thus, we may express X as x = (Bl, Bz,...). In addition, the inner
product takes the nice form of

(a,a,...), B, B,...)>=3 aB .

1 2 1 2 i 1ii
Thus, there is another way of expressing the vectors in X so that the vectors,

expressed in the new way, act like tuples of real numbers.

EXAMPLE 3.7: Constructing an orthonormal basis from (1,1,1), (1,-1,3) and

(5,1,-3) for R°.
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Vl = (1)191)
<1,-1,3), (1,1,1)>
v = (1,-1,3) - (1,1,1)
2 <(1,1,1), (1,1,1)>
= (0,-2,2)
<(5,1,-3), (1,1,1)>
v = (5,1,-3) - (1,1,1)
3 <(1,1,1), (1,1,1)>
<(5,1,-3), (0,-2,2)>
- (0,-2,2)
<(0,-2,2), (0,-2,2)>
= (4,-2,2).

Finally, our orthonormal basis is

Yl = (v3/3, v3/3, v3/3)
Yo = (0, —v2/2, v2/2)
Y3 = (v6/3, -v6/6, —V6/6)

The Gram Schmidt procedure, which constructed an orthonormal basis in
the proof of Theorem 3.15, essentially tailors the basis for a given inner
product, to make the inner product, expressed in terms of the new basis, look
like the euclidean inner product. In addition, the norm, expressed in terms
of the new basis, is the euclidean norm:

Il = vE x;

where x = (xl,x ...) is the description of the point in terms of the

2’

orthonormal basis {yl, yz,...}, that is, the point in question is Xxi ¥,
th

Note that xi is a scalar, the i component of x, while yi is a vector, the

.th .

i member of the basis.

For the remainder of this manuscript, we shall take <x,y> = inyi, and

write it using the conventional dot product notation:

Xey = Xxiyi.
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For the case when the number of elements of a basis B for an inner
product space X is finite, note that our expressions in the orthornormal basis
are vectors in R®. That is, in the orthonormal representation,

X = (xl,.'..xn) € Rn, and the inner product is the usual euclidean dot
product. This essentially proves that all finite dimensional (i.e. having a
finite basis) inner product spaces are copies of Rn, or, more strictly
speaking, the properties of finite dimensional inner product spaces are the
same as the properties of Rn. Formally, we say that finite dimensional inner
product spaces are isomorphic to Rn. Because of the revealed importance of R"

under the euclidean inner product, we shall develop some properties of R" in

detail, in the next section and next chapter.

3.5 Sequences in Rn

In this section, we shall replicate the Theorems of section 2.2 for
sequences of real vectors. To prevent confusion, we shall use superscripts to
denote the order in the sequence, while subscripts shall denote the components

of a vector. That is

® Y

1 1

i
c X))
n

X = (xi x
It S A
t
will represent the i h member of a sequence of vectors. A sequence will be
denoted {xl}:_l or merely x .
Definition 3.8 x" converges to x° if (¥ ¢ > 0) (3Ne EMN) i > N>
Ix* - xoﬂ < €.
Note that this definition is the same as Definition 2.6, except that the

distance of x1 and xo is now a norm instead of absolute value. As before, if

i o .
X converges to x , we write
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i o
limx = x
i

i o
or x -ox .
i . i
If x* converges to something, we say x converges.
Remarkably, a sequence converges if and only if every component

converges.

THEOREM 3.16: x > x° if and only if Vj x; > x?.

i o i
Proof: (3) Let ¢ > 0. Sincex »*x, 3N, i > N 3 llxl - xOH <e.

But
i o i 0.2 n ,i 0.2 i o
X, - X, =vV({xX, - x,)" <v)., . (x,. -%x.)" = |lx - x <e 3.34
e =Gl = vor = I g - D I (3.34)
Thus, if i > N, lx% - x?l < e, and xt » x°.
] i 73 ) i 7
i o
Since x% - x?, N,, 1 >N |x, - x,] < e/vn.
J J J 4 J J
But then, if i > N = max {Nl’ NZ""'Nﬁ}’
i n i o 2 n 2
fIx -x|t =v ¥ x - x) <v 3} (e/vn) =¢
o =1 ] J =1
Q.E.D.

DEFINITION 3.9: xi is cauchy if ¥ ¢ > 0 INEN, i, k > N » ||xi - ka
< e.
Again, this is Definition 2.7 in its vector clothes.
THEOREM 3.17: xi converges if and only if xi is cauchy.
Proof: xi converges iff Vj x; converges iff Vj x; is cauchy. The first
equivalence by Theorem 3.14, the second by Theorem 2.6. It remains to be
shown that xi is cauchy iff Vj x; is cauchy.
Suppose xi is cauchy. Let ¢ > 0.
Then 3N, ik > N  [lx - x5 < e.

Thus, by (3.34):

|xt - x¥| < Ixt - ka <€
J J -

i
and hence xj is cauchy.
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i i k
Suppose Vj x; is cauchy. Then 3Nj ik > Nj > Ixj - le < ¢/vyn. Thus,
if i,k > N = max {Nl,.,.,Nn},

i k n i k 2 n 2
Ix -xl=v3I (x -x) <V} (e/Vn) =c¢
i=1 3 J j=1
Q.E.D.

Theorems 3.14 and 3.15 denomstrate that much of what we learned about
sequences of reals applies to sequences of real vectors. In particular, the
sequence of vectors converges if and only if the components converge, and, if

th o i i
so, the j component of x = lim x is lim x .
129 19 J

This puts us on comfortable, well explored ground, since we analyzed
these sequences in chapter 2 in great detail. In figure 3.7, a sequence in R2
is plotted, converging to x°. As this illustrates, the set of x satisfying

lIx - x°|f < ¢
forms an open disk around x°. In R3, Ix - x°" < ¢ creates a ball (or
sphere) of x's, called an ¢-ball or e-neighborhood.

THEOREM 3.18: Suppose xi > xo, yi > yo and ki - ko, for scalars ki.
(1. < + yh > 6+ y®)
(ii) Xi(xi) + 2%°.

The proof is left as an exercise.

THEOREM 3.19: Suppose X" - X» yl +> x° and (Vi€ IN) (Vj < n) x; < z; <
i
Yj-

i 0
Then z~ » z .

Proof: Follows immediately from Theorems 2.10 and 3.16.

Q.E.D.
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It is clear that the hard work concerning sequences was done in Chapter
2, and theorems 3.16-19 are obtained virtually for free. However, some
mention of what goes wrong when the space is infinite dimensional is
warranted. Consider vectors

X=(xX, %X ,...), X, ER .
Gy %, 1

of infinite length, and define a norm
=l = sup{lxil}.

Now let X = {x = (x ...)/Hx"m < »}, This is clearly a norm (i.e. it

1" %2’

satisfies the conditions stated in Theorem 3.4) when

yeol) = +y., Y ...
gt ) T Y Xy Y

L) = (kxl, AX ).

. beos) + .
(x1 x2 ) (y1 y

X(xl, X

2"' 2,.-

Now consider the sequence

xi = (0, 0,..., 0, 1, 1, 1,...)

so that the first i components of xi are zero, and the remaining components
are 1. Clearly x? + 0, since YV ¢ > 0, if i > j lx; - 0| = Jo-0| = 0.

However,

i
Ix - Ol =1 for all i.

That is, all of the components converge, but the sequence does not. Such
problems in infinite dimensional spaces will not be discussed further in this

manuscript.
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EXERCISES

1.

10.

11.

12.

Show Hx"m = max{lxil }i=1,...,n} is a norm for x € Rn, that is, show

i. lIxll =0 IFF x =0
o

ii. Il = In il

i, Ihx + vyl < il + liyll,.
For n=2, find the "circle"”, that is, the points H(xl,xz)ﬂw = ¢ for
constant ¢.

Show that RV with the operations of example 3.2 is a vector space.

Show that C[0,1] in example 3.3 is a vector space.

n
Complete example 3.4, by showing _21 a X y_ is an inner product.
i= iii

What norm arises from this inner product? Draw its "circle”

(Ixll = 1) for n=2.

Complete example 3.5, by showing <f,g> is an inner product.

What does the cauchy-schwarz inequality say for the example 3.4 inner
product?

Prove (3.32).

From definitions 3.1, 3.2 and 3.3 only, prove Theorem 3.12.

Prove Theorem 3.13

Show any three vectors in R2 are linearly dependent.

Show any n linearly independent vectors in Rn form a basis for Rn.

Show that, if an inner product space X has a basis B with n < @
elements, then any set A C X with more than n elements is linearly

dependent.



13.

14.

15.

l6.
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Show that, if an inner product space X has a basis B with n < =
elements, then any set A C X with strictly less elements than n
elements is not a basis.

Show {lex—xOH < €} is convex for every X and ¢ > 0. That is show
"x—xOH < ¢ and Hy—yoﬂ < e |Iax+ (I—X)y—xoﬂ < e.

Consider the inner product in R2

<(x1,x2). (yl.y2)> =Xy + 3x2y2 for «, B > 0.

Consider the basis {(1,3), (1,0)}. Use the Gram Schmidt procedure to
produce an orthonormal basis.

Consider the inner product in Rn

<X,y> =max xy
® i ii

the maximum of the product of the components of x and y.
i). Show this is an inner product.
ii). Draw the circules for ||xl|0 = (<x,x>¢)%.
iii). wWhat vectors are orthogonal in this inner product? TIllustrate

with a diagram.



