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2.1 THE REAL NUMBERS

A rational number is a ratio m/n of integers, where n # 0. That is,
the set Q of rationals is

Q={m/n | m€Z, n €Z, n# 0}

Note that any finite decimal expansion gives a rational. For example,

2.178093 can be expressed as

2178093

2.178093 = —————o
1000000

Some rationals do not have finite decimal expansions:

= .1111

O
I

There is a sense in which the set of rational numbers has "holes" in
it. For example, v2 is not a rational. To see this, we need the following

Lemma:

2
LEMMA 2.1: Suppose m is an integer and m is even. Then m is even.

PROOF: By contrapositive: we show that if m is not even (i.e. odd)
then m2 is not even (i.e. odd).
If m is odd, m can be expressed as
m=2k +1
(that is, m is an even number plus 1)
Thus m2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

2 .
Consequently, m is odd, being an even number plus 1. Q.E.D.

Now we show that v2 is not rational.



THEOREM 2.2: V2 is not rational.

PROOF: By contradiction. Suppose ¥2 is rational, that is

vZ = m/n
we may assume that at least one of m and n is odd,
since if they were both even, we could divide both by 2
(e.g. 24/26 = 12/13).
or 2 = mzln2
or 2n2 = m2

5 &{/‘]"‘"

It follows that m2 is even, since it equals two times an egén. By the

lemma, m is even, i.e. m = 2k for an integer k.

Therefore
2n2 = m2 = (2k)2 = 4k
or n2 = 2k2

But then nz, and hence n, is even. This contradicts our initial

statement that at least one of m and n is odd. Q.E.D.
Even though v2 is not rational, we nonetheless consider it to be a number.
In particular, there is a way of constructing the number, since a right
triangle with sides of equal length will have a hypotenuse of length x
satisfying, by the pythagorean theorem

x2 = 12 + 12

or x2 = 2.

One manner of filling the "holes" in the rationals is as follows.

DEFINITION 2.1: a is an upper bound for a nonempty set A C Q if Vq € A,
q < a. b is a lower bound for A if Vq € A, q > b. If A has both upper

and lower bounds, A is bounded.



DEFINITION 2.2: a is a least upper bound or supremum for a set A # ¢ if a
is an upper bound, and if b is an upper bound to A, a < b. Similarly, a is a
greatest lower bound or infimum for A if a is a lower bound for A and if b is
a lower bound for A, b < a.

We shall denote a supremum for a set A as sup A, similarly an infimum
for A is inf A. Note that the set of rationals

faeqQ|qa’ <2
possesses both upper and lower bounds (2 and -2, respectively, will work), but

has neither supremum or infimum, at least in the rationals, since v2 is not

—

o,
rational.

DEFINITION 2.3: r is a real number if r is a supremum of a bounded nonempty
set of rationals. The set of real numbers is denoted R.
Thus, we see immediately that v2 is a real, since, trivially
2
v2 = sup {x | x < 2}
In addition, since
inf A = -sup {-x | x € A}

we see that infimums of sets of rationals are reals. Furthermore

THEOREM 2.3: QCR

PROOF: We must show that q € Q ® q € R. But

q = sup {q} € R. Q.E.D.

THEOREM 2.4: Suppose x <y, X,y €ER. then 3q € Q, x < q <Yy.

y-Xx
PROOF: Since x < vy, —5— > 0.

1 y-X
Therefore 3n € |N, - < _E_' by (1.70).
n



Let m be the largest integer satisfying

m
.._<_x
Then
m+1 m 1 y-X y+x y+y
X €me ==t =€ Xt e = e { — =Y
n n n 2 2 2
m+l
and hence — is our rational. Q.E.D.
n

Theorem 2.4 shows the rationals are "dense" in the reals, that is, there

are no intervals of reals devoid of rationals. Thus, we may approximate reals

as closely as we wish, but not perfectly, by rationals.

THEOREM 2.5: Let ¢ # A C R be bounded (i.e. 3b Vx € A |x| < b).

then sup A € R.

CLAIM:

PROOF: if A = {r}, then sup A = r € R. Thus, we may presume A has at
least two elements.

Let B={q€Q| 3a€A a>q>-b}.

B is nonempty since A contains at least two reals, and a rational in
between by Theorem 2.4. B is bounded by b, and hence sup B is a real by
definition.

Let 8 = sup B.

B is an upper bound for A.
PROOF OF CLAIM: by contradiction, suppose B is not an upper bound.
Then Ja € A, a > B. But by Theorem 2.4, there is a q € Q,
a>q>B, and thus q € B.

Hence B # sup B, since q > B and q € B, a contradiction.



CLAIM: B is the least upper bound for A.
PROOF OF CLAIM: by contradiction, suppose a is an upper bound for A,
and « < B. Then Vq € B, 3a € A q < a < a (by definition of
B and upper bound).
Thus & is an upper bound for B, contradicting B = sup B, the least
upper bound.

These claims, put together, imply sup A = sup B € R. Q.E.D.

Theorem 2.5 provides a fundamental property of the real numbers: any
nonempty bounded set has a supremum. This crucial property will be used again
and again in the following chapters. Effectively, we have shown that the
reals do not have holes, like the rationals do, and for this reason the reals
are referred to as the continuum.

An immediate consequence of Theorem 2.5 is that an increasing list of
numbers which are all less than some bound converges. Let x < x

1- 2= 3

be a list of numbers, called an increasing sequence, and suppose (3b)(Vn)

<X <.

xn < b. Then there is a number xo so that, for any small number ¢ > 0,
there is an N and all the values of the sequence numbered greater than N are
within ¢ of xo. That is, eventually all of the sequence, except the first
"few" terms (possibly trillions, but a small portion of the infinitely many
terms), are very close to xo.

Put in precise mathematical language;

(Ve >00(AN)n>N?2? |xn - xol <e
¢ serves the role of "as close as you want” as long as that proximity is
positive.

The limit of the increasing bounded sequence considered before, what it

reaches as n gets very large (or, rather, what the sequence gets arbitrarily

close to), in this case is easy to calculate:



X, = sup {xn in= 1’2'3'f"}

The proof of this fact will be left as an exercise, with a hint: it is

straightforwardly proved by contradiction.

Example 2.1 (Zeno's Paradox)

Achilles and a tortoise are going to run a footrace. Achilles can run
twice as fast as the tortoise (must be a quick tortoise--or maybe Achilles’
tendon hurts and he can't run so fast), and the tortoise will get a l-meter
head start. We suppose Achilles runs 1 meter per minute.

Fleet-footed Achilles bounds over a meter, and the tortoise has moved
ahead 1/2 meter. Achilles leaps this 1/2 meter, and the tortoise has moved
1/4 meter. Achilles crosses the quarter-meter, and the tortoise has gone
1/8. Achilles jumps this 1/8, and the tortoise has gone 1/16, and so on.
Zeno reasons that, since infinitely many events must occur for Achilles to
catch the tortoise, Achilles can never catch the tortoise. (Achilles goes a
meter, then another half, then a quarter, another 1/8th, ..., and each time,
the tortoise is ahead, by less and less, of course). Zeno then drew the
conclusion that, because logically Achilles can never catch the tortoise, and
because we know he does, we have a contradiction. Thus, we conclude that the
footrace was an illusion, and more generally, all movement is an illusion.

One could, of course, accept Zeno's reasoning, and believe the world is
an illusion. An alternative, however, is to add up the distances Achilles
moves before he catches the tortoise, and show that, just because there are
infinitely many of them doesn't mean we can't add them up.

The "steps" we described are:
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To see these add up to 2, note that we may rewrite this as

% s el s st e "

.

Further note
n .1 1 0 1 usn n
Zi=0 B =B + A+ ...+ (R =2 - (%)
(The reader is requested to prove this by induction.)
Thus, an n grows toward infinity, Zi?o (‘A)n grows toward 2, reaching 2
as n reaches infinity. Thus, Achilles reaches the tortoise at the two-meter

mark, and surges ahead of the tortoise after that.

This answer is consistent with the ordinary approach to this problem.
Achilles runs twice as fast, and the tortoise has a l-meter head start. The
time the tortoise runs another meter is the time Achilles runs two meters, so
they are tied at the two-meter mark, since 1 + 1 = 2 (head start + 1 meter for
the tortoise = 2 meters for Achilles).

Clearly, there is no logical inconsistency as Zeno and many who followed
him thought. Zeno couldn't imagine adding up infinitely many things. The
purpose of this section is to show how such a process is accomplished. To

generalize from this example, we showed that the sequence of numbers

1, 1

3
» 1 -, 1
4

N
[>T

gets ever closer to 2. That is, if we want it to be no more ¢ > 0 away from
2, even when ¢ is very small (e.g. 0.00000000001), all we have to do is wait
long enough, and the remaining terms of the sequence (those beyond, say, the

100,000,000,000th term) will be within ¢ of 2. The point of this example



(besides debunking Zeno) is that we can find "limits" of infinite sequences—-
infinite is within our understanding. 1In addition, such limits are defined by

the sequence getting ever closer: as n gets very large, the nth term of the

sequence, and all those larger than n, get very close to the limit.

2.2 SEQUENCES

o
A sequence {xn}n—l’ or just X is an association of integers with real

th
numbers, where xn gives the n real number.
EXAMPLE:
n
X, = (-1)

This sequence alternates -1, 1, -1, 1,

EXAMPLE:
x = 1/n
n
This sequence, 1, 1/2, 1/3, 1/4, 1/5, ... gets close to zero as n gets large.

This suggests the notion of a limit.

DEFINITION 2.4: The sequence x converges to x if
n 0

> -

(Y e > 0)(3 Nc €EN) n> Nc | X - X, | < €

If so, we write x »* x or limx = x , and say x is the limit of x .
n 0 nio n 0 0 n

The definition says, in words, that if we go out far enough (n > Nc) we

can make the terms as close to xo as we choose (|xn - xol < €). That is, no

matter how close we want the terms xn to get to x but not equal, we can go

o'
out far enough in the sequence so that the remaining terms are that close.
The sequence xn = 1/n does indeed converge to zero. To check this, let

¢ > 0 be any number. Let Nc be an integer larger than 1/¢, that is

N > 1/¢
€
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Thus, if n > Nc, 1/n < 1/Nc < e. “c exists by (1.70).

thus, if n > N ,

Hence 1/n =+ O.
The problem with this definition of convergence is that it requires one

to guess the limit X, in order to check convergence. The following theorem

avoids this problem.

DEFINITION 2(:} X 1is cauchy if ¥Ye > 0 IN €N
n €

m,n>N 2 |x -x| <e¢
€ n m

THEOREM 2.6: x converges if and only if x is cauchy.
n n

We shall defer proof of this theorem briefly until developing one other
result. The value of the theorem it that we may establish a limit point
xoexists without guessing the limit in advance, since the definition of a

cauchy sequence does not involve xo.

THEOREM 2.7 (Bolzano-Weierstrauss): Let A C R contain infiniiely many
elements, and be bounded. Then
(3a € R)(Ve > 0)(3Ix EA) O < |x-al <e¢
PROOF OF THEOREM 2.7: Let b be the bound of A, so (Vx € A) |x| < b.
Since A has infinitely many elements, there are infinitely many elements
in [-b,0] or [0,b] or both. Choose the half with infinitely many
elements (or choose one, if both), and divide it in half (e.g. if [0,Db],
then [0,b/2] and [P/Z,b]). Now choose the quarter with infinitely many
elements. Cuntinue this process. 1If [ai,Bi] is an interval with

infinitely many elements; divide it into two intervals



10

a + a +B,
i i i i
(e , > 1, 5 B.]1 and choose the half with infinitely many
i i
elements.

This provides a series of intervals which we will denote [an,Bn]
n-2
of length b/2 (if the first [cl,Bll = [-b,b] of length 2b). Further,
a is an increasing sequence, and thus has a limit a_, and Bn is a

decreasing sequence, and has a limit of Bo. In addition,

converges to zero, SO Bo = a This is our point a. Now, in any

o
interval around a, that is (a-e¢, a+e), there is an interval [an,Bn], if

we choose n large enough so that

In this inteval, there are infinitely many points of A. Choose any one

to satisfy the theorem. Q.E.D.

The Bolzano-Weierstrauss Theorem proves the intuitively obvious fact
that, if an interval has infinitely many points of A, then it is not possible
to "space them out"”; at least some must crowd together around a point.

PROOF OF THEOREM 2.6:

(®) Suppose xn converges to x Let ¢ > 0. Then ¢/2 > 0 and BNC

0’ /2
s.t.
> - /
n2N_, Ixn xol < €/2
Thus, if n,m > Nclz (1.67)
|xn— xml = lxn— X+ Xo- xml < Ixn- xol + |xo— xml =

L]
)

- + - < /2 + ¢/2
|xn xol Ixm xol € €
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Thus Nc works for the cauchy definition.

/2
(«¢) Now suppose X is cauchy
Case 1: {xnln € N} is finite.
Then we claim xn is eventually constant.
Let ¢ = min {|x - x | |x # x }. Since {x |n € N} is finite, ¢ >
n m n m n
0. Since x is cauchy, 3 , n,m >N = |x - x | < €.
n € € n m

Thus x = x for n,m > N (otherwise |x - x | < |x - x | by the
n m € n m n ‘m

definition of ¢). Thus, x trivially converges to x
n

Now suppose {xnln € N} is infinite. By the
Bolzano-Weierstrauss theorem, 3 xo € R so that
0 < |x% | <
xj - xo €
for some x. € {x_|In € N}
j n
Let ¢ > 0. 3“:/2 s.t. n,m > Nclz implies

Ix - x| < e/2
n m

In addition, we can choose an xj. i> Nc , So that 0 < Ixj - xol <

/2
¢/2. Thus, if n > Nc

/2
(1.67)

- - - < -~ -~ < =
Ixn xol < |xn xj+xj xol < Ixn le + Ixj x0| €/2 + €/2 = ¢

Therefore xn > x Q.E.D.

0

Cauchy convergence is useful because it avoids having to know the limit
to show a sequence converges. In particular, it allows us to establish the
existence of a limit point. We shall see it in the study of fixed points to
contraction mappings and again in the existence of solutions to differential
equations.

The following theorems establish the existence of limits to some useful

sequences.
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THEO. 2.8: If ad d >
REM xn x0 an yn yo, then
i >
(1) (xn + yn) X, + Y,
(i) X ¥, > XY,

(iii) if y = 0
n

<+
+
<+

PROOF:

. - .
(1) xn xo . 3N1 n> Nl

>y o > |y -
Y, 2 Y 3N2 n > N2 Iyn yol < €/2

> -
lxn xol < €/2

Thus, if n > N = max {N_,N_} (1.67)
€ 12
Ix +y -+ y)l = Ix - %, + ¥ -yl <
|xn— xo| + Iyn— yol < €/2 +¢€/2 =¢ Q.E.D.
1 €
(i1) AN )n >N 3 |x-x ] < - min {1, —}
1 1 n O 3 1+ly |
0
1
N)n>N 2 ly-y | <-min {1, }
2 2 n 0 3 1+]x |
]
if n > max {NI,NZ} (1.67)
‘xnyn- xoyol = I(xn- X)) (V= Yo + (X~ %)% *+ (Y- y0)x0| £

I(xn— X (Y, - yo)l + ly (x - x| + I%5Cy - yo)l =
Ixn— xo| Iyn— yol + lyol Ixn— xol + Ixol lyn- yol <
ly | Ix |
0 0
<
1+|%x |
)

[

e 1 €
(2)(=) + - +
3 3 3 1+|yo|

wWin

4+ -
3

wl®
Wi
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ly | Ix |
_ 0 0
since <1, <1l, |x-x | <=, |x-x}| < =
1+|y | 1+]x | n O 3 n
0 0
€
and |y -y | < -.
n 0 3
2
clyol
(ii1) (AW )n >N > ly -y | <
1 1 n (V]
fy | y
0

0
(W)n>N 3 |ly-yl<—>3]|y|>]|—=|>=
2 2 n 0 2 n 2

1 2
<
ly | iy |
n
Thus, if n > max {N_,N_}
1 2
2
Yy -y ly -y | ely |
1 1 0 n n O (V] 2 1
|— - —I = =||||<( 2)(I |)||=c
Yy y Yy y y
n 0 no n ] y0 y0

Q.E.D.

COROLLARY 2.9: ify >y # 0 and x > x , then
n 0 n 0

Corollary 2.9 follows from (ii) and (iii).
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THEOREM 2.10: If x * x _andy > x_and
n 0 n 0

VnEN x <z <y, thenz - x
n n

n n 0

PROOF: Note Izn—xol < max {Ixn—xol. Iyn—xol}

Let ¢ > 0. 3 N1 n>N

3 NZ n>N

Thus, if n > max {NI’NZ}

3 |x - <
1 P I xpl <e

> -
2 Ivn yol <e

[
L

lz_-x,| < max {Ixn-xo|. ly -¥ol} < max {e,c} =

THEOREM 2.11: Suppose A C R is bounded. Then 3 a sequence x , x € A,
n n

hd .
xn sup A

PROOF: CASE 1: sup A € A. Then x = sup A for all n converges to
n

sup A.
CASE 2: sup A ¢ A. Let X, € A. Then since %(x1+sup A) <

sup A, 3 X, € A, %(x1+sup A) < x_ < sup A (since %(x1+sup A) is not

2

an upper bound)
In general, we define the sequence xn € A by

%(x

n_1+sup A) < xn < sup A

(since ‘/z(xn +sup A) is not an upper bound, an € A with the desired

-1
property);
it remains to be shown that xn <+ sup A

sup A > x > ‘b(xn + sup A) > %sup A + %(%(xn_2+sup A)) > ...

-1
1 1
“%hsup A+ % sup A+ ... + sup A+ — x =
n-1 n-1 n
2 2
1 1
(1- ——) sup A + —— x - sup A.
n-1 n-1 1
2

Thus, by Theorem 2.10, xn+ sup A as desired Q.E.D.
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2.3 CONTINUITY

The notion of continuity should capture the idea on no breaks in a
curve. Figure 2a is continuous, while 2b has a break in the curve at Xy
What occurs there is that f(x) takes a large jump even as x takes a very small

step.

DEFINITION 2.6: f:R>R is continuous at x if
0

Ye>0 38§>0 |x—xo| < &> |f(x)-f(xo)| < e

if f is continuous at all Xq f is said to be continuous.

Effectively, this definition says that, if x is close to
X s (Ix—xol < &) then f(x) gets close to f(xo)(lf(x) - f(xo)l) < €. Thus,
it captures the intuitive notion of no breaks or jumps, since these are points
where f changes a lot even while x is altered only a tiny amount. The next
theorem relates continuity to the behavior of sequences. Suppose xn > xo is
a sequence. We may define a new sequence yn = f(xn). For example, if
2

. 2 . -
x = 1/n, which converges to zero and f(x) = x , then v, = f(xn) =xm =t

2 — e T T
1/n". Theorem 2.12 shows that, f is continuous at X, if and only if
f(xn) > f(xo) whenever X > X, Thus, continuity lets us take limits inside
a function:

F(lim x ) = lim f(x )
n n-w n
n-rco

since both are f(x,). That is, continuous functions commute with limits: it

does not matter what order they are written in.
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THEOREM 2.12: f is continuous at xo if and only if for all sequences x - xo,
. n
f(x ) » f(x))
n 0
PROOF: () Let ¢ > 0> 38 > 0
— £ -
|x xol <83 |fx) f(xo)l < e

Now suppose x > x We must show f(xn) > f(xo).

o’
0’ 3“6' n > Né
By continuity, this implies

Since x 2 x 2> |x -x | < 8&.
n n O

n>N » |[f(x)-f(x )| < ¢
n 0

8
That is, f(xn) > f(xo) as desired.
(¢) by contrapositive: Suppose f is not continuous at xo. Note
that the negation of continuity is

~¥Ye > 0 8§ >0 (|x—x0| <4 > If(x)—f(xo)| <¢e) @

J3e >0 V8§ >0 (|x—xo| <& A |f(x)—f(x0)| > €).
This defines a sequence. Let x1 satisfy
le—xol <1A If(xl)-f(xo)l > €
now choose x2 so that
|x2—x0| < % le-xol A If(xz)—f(xo)l > €
i.e. choice of 62 = % |x1—xo|
In general, let 6n =% Ixn_l—xn_zl
Then
- — Le -
|xn xol < % Ixn_2 xn_zl < %% Ixn_2 xn_3| < ... <
1
— x -x |
n-1 1 0

2
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Thus |x -x 2 00rx 2»x
l n 0| n 0

clearly f(xn) does not converge to f(xo), since
If(xn)-f(xo)l >e >0 Q.E.D.

From Theorem 2.8 and Theorem 2.12, we obtain:

THEOREM 2.13: if f, g are continuous at x , then
0

(i) £(x) + g(x) is continuous at xo

(ii) f(x)g(x) is continuous at X,

(iii) if g(xo) # 0 f(x)/g(x) is continuous at xy-

THEOREM 2.14: if g is continuous at xo, and f is continuous at g(x ), then

f(g(x)) is continuous at xo.

PROOF: Let ¢ > 0

1
362 >0 Ix—xol <$

8. >0 Iy-s(xo)l < 51 > lf(y)—f(g(xo))l < e

, ? Is(x)—g(xo)l <&

Thus, if Ix—xol < §_, then

2’
|S(X)—g(x0)| < 61 and hence (y = g(x))

If(s(x))-f(s(xo>)l < €. Q.E.D.

:

n
THEOREM 2.15: The polynomials § o a x are continuous.
i=0 i

1]
PROOF: By induction, } ax = ao is constant and hence
i=0 i

e

continuous (any 3§ works).

f(x) = x is continuous (8 = ¢ works).
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Inductively, by part (ii) of Theorem 2.12, aix1 is continuous. Now,

. . n i, .
using (i) in an induction, Zi—o a;x is continuous. Q.E.D.

THEOREM 2.16 (Intermediate Value Theorem): Suppose f is continuous, a < b,
and f(a) < 0 < £f(b). Then 3x, a < x < b, and £(x) = 0.
PROOF: Let A = {y|la <y < b and f(y) < 0}. This is nonempty since
a € A, bounded by b. Hence yo = sup A exists. Further 3 sequence yn >
yo, yn € A, by Theorem 2.11. 1If f(yo) = 0, we're done. So suppose
f(yo) < 0. Then f(yo) <0< f(yo+c) for all ¢ > 0 (since, if
f(y°+c) <0, yo + ¢ € A contradicting yo = sup A), which contradicts
continuity.
COROLLARY to the intermediate value theorem: Suppose f:[a,b] » [a,b] and
f(a) > a, f(b) < b. Then 3Ix, a < x < b, f(x) = x. Such an x is called a
fixed point.
To prove this corollary, merely note that g(x) = f(x) - x satisfies the

hypothesis of Theorem 2.16.

2.4 DERIVATIVES
DEFINITION 2.7: a is the derivative of f at xo if
f(x)-£f(x )
0
lim ——— = a

XX X-X
0 0
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If f has a derivative at xo, we will denote it by f'(xo).

If f has a derivative at all x, we say f is differentiable.

Note that f'(xo) is the slope of f at a point x f(x)—f(xo) is the

o
change in f when x changes by x—xo, and thus
f(x)-£f(x )
0
X-X - Ax
0

is the slope of f (see figure 2.3)
As we send x toward Xy (f(x)—f(xo))/(x—xo) more closely approximates

the slope of f at x In the limit, we obtain exactly the slope ofbf.

0’

Consider figure 2.4. f is not differentiable at xo, because the slope

from the left does not equal the slope from the right. Thus, the limit will
not exist in general. To see this formally, note that the sequence

n
xn = x0 + (-1) 1/n

converges to x., but

0’
f(x )-f(x )
0

merely alternates between the two slopes, and hence does not converge.
Any differentiable function is continuous, as we see from the next

theorem.

THEOREM 2.17: If f is differentiable, then f is continuous.
PROOF: Rewriting the definition of differentiability, we have

F(x)-£(x )-£'(x )(x-x )
0 0 0

lim e =0
XX Ix—xol

or Ve 38 Ix—xol <8
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| £(x)-£(x )-£'(x )(x-x )|
0 (o] 0

< e
fx-x |
0
or, equivalently
- -f! — —
| £(x) f(xo) f (xo)(x xo)l < e |x xol

€

Let & = min {§, ————————
c+|f'(xo)|

Then, if |x-xqg| < §
EG-£(x D] < TECO-ECx)-£ (%) (x-x ) | + €' (x ) (x-x )| <
elx-xol + |f'(xo)| Ix—xol =
(e + |f'(xo)|) Ix—xol <e Q.E.D.

Another notation for the derivative is

d
— f(x) = £'(x)
dx

This notation is reminiscent of the slope Af/Ax, and df/dx is merely
the limit of the slope as Ax » 0. This notation makes it easier to state

the following theorem:

THEOREM 2.18: if f and g are differentiable, then

d
(i) E- (fF(x) + g(x)) = £'(x) + g'(x)
x

d
(ii) = f(x)g(x) = £'(x)g(x) + £(x)g' (%)
x

d
(iii) — £f(g(x)) = £'g(x))g' (x)
dx
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PROOF: (i) Let ¢ > 0. Since f is differentiable at xo,

[ECx)-£(x )-F'(x ) (x-x )|
0 0 0

38 >0 s.t. |x-x |<§ > < e/2
1 o 1 lx—xol

. . _ >
Similarly 362 >0 s.t % xol < 62

lg(x)-g(x )-g'(x )(x-x )|
] 0 o
< €/2

|x-x |
()

Thus if Ix—xol < & = min {61,62}

|£Cx)+g(x)-C£(x I +g(x )-(£' (x )+g' (x ) (x-x )|
0 0 0 0 0

[x-x |
0

[EG)-£(x )-£'(x )(x—x )+g(x)-g(x )-g'(x )(x-x )|
0 0 0 0 0 0

<
[x-x | -
0

[E(x)-£(x )-£'(x )(x-x )|+|g(x)-g(x )-g'(x )(x-x )|
0 0 0 0 0 0

<
[x-x |
)

€ €
— 4+ — = ¢. Therefore
2 2
f(x)+g(x)—f(xo)+s(xo)
lim = f'(x )+g'(x ).
XX xX-X 0 0
0 0
(ii) Note

f(x)g(x)-f(xo)g(xo)—[f'(xo)g(xo)+g'(xo)f(xo)](x—xo) =
g(xo)[f(x)—f(xo)—f'(xo)(x—xo)]+f(x0)[g(x)—g(xo)—g'(xo)(x—xo)]

+f(x)g(x)—f(x)g(xo)~f(xo)g(X)+f(xo)g(xo)
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= g(xo)[f(x)—f(xo)—f‘(xo)(X—xo)] + f(xo)[B(X)—S(xo)-s'(xo)(X—xo)]

+[f(x)—f(xo)]ls(x)—z(xo)]

Thus
[Ex)g(x)-F(x dglx )-(£'(x Ig(x )+f(x )g'(x ))(x-x )|
) 00 0" 0 0 0 0
lim - <
XX |x-x | -
0 ]
lg(x D[ IFx)-£(x )-£' (x )(x—x )]
0 0 0 0
1im
X% - {x-x |
0 0

[ CE(x ) lg(x)—g(x )-g' (x )(%x-x )|
0 0 0 0
4

lx-x |
0

[E(x)-£(x )] lg(x)-g(x )|
0 0
+

x-x |
0

The first two terms go to zero by differentiability.
The third term goes to zero since

f(x)-f(x ) (x)-g(x )
I £(x X, | 1g(x)-g X |

lim
X% |x—x |
0
If(x)—f(xo)l
= lim lim |g(x)-g(x )|
x*xo |x—xo| X% 0

= |f'(x )| lim |g(x)-g(x )| = O by continuity.
0 x> 0

0
(iii)
f(s(x))—f(g(xo))
lim =
xX X-X

0 0
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f(s(x))—f(s(xo)) B(X)—S(xo)

lim . =
X% g(x)-g(x ) xX-X
0 0 0
f(g(x))—f(s(xo)) g(x)—g(xo)
lim lim ———— =
XX g(x)-g(x ) X% x-X
0 0 0 0
f(y)—f(yo)
lim ————— | g'(x ) = f'(g(x Ng'(x )
Y*Yo Y—Yo Y Y 0

where y = g(x), Yo = g(xo). and the substitution of the limits follows

from the continuity of g; since x—>x0 implies g(x)ég(xo). Q.E.
d n n-1
THEOREM 2.19: For integers n > 0, E—-x = nx
>4
PROOF: By induction.
d o 4
n=0: —x =—1=0. To prove this, let f(x) = 1 for all x.
dx dx
f(x)-f(x )
0 1-1
lim ————=1im —— = 1lim O = 0, as desired.
XX X-X XX X-X X%
0 0 0 0 0
d n n-1
Now suppose — X = nx
d n+l d n n d n
_— X = —X(X ) =% +X =X =
dx dx
n n-1 n d .
X + x(nx ) = (n+1)x as desired. However, we used — x = 1 in

dx

the above. It remains to show this fact. If f(x) = x

f(x)-f(x ) x-X
0 0
lim =1lim — =1lim 1 =1
XX X=X AKX X-X XX
0 0 0 0 0

D.
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. . -1
Inverse functions, written f ~(x), reverse the operation of f, so that

£ ) = x.

-1
THEOREM 2.20: If f exists and f is differentiable, f'(f (x)) # 0, then

d -1 1
—f (x) =
dx -1
£ (f (x))
)
d d -1 -1 -1
PROOF: 1 = w—=x = — f(f (x)) = £'(f (x)) f (x). Q.E.D.
dx dx

f_1 will exist when f does not change direction.
Note in the figure 2.5b, f changes direction and hence there are two
points mapped into f(xl) = f(xz). So either one is a candidate for f-l(y).
Although integrals will be fully explored in a later chapter, we shall
require some use of them now. The reader may think of an integral as an "anti

derivative”, that is, the operation which cancels derivatives, as given by

THEOREM 2.21 (Fundamental Theorem of Calculus): If F is differentiable:

b
F(b) - F(a) = | F!'(x) dx
a

The proof is deferred. From Theorem 2.18 (ii), we have

d
E- u(x) v(x) = u(x) v'(x) + u'(x) v(x)
> 4

and this yields integration by parts:

b d
| u(x)v!(x)dx ] — u@x)v(x) - vix)u'(x)dx
a a dx

b d b
J —ux)vx) - [ v(x)u'(x)dx
a dx a

]

u(b)v(b) - u(a)v(a) - aIb u' (x)v(x)dx



o
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Thus, we have

b
j fr(x)dx
a

£(b) - f(a)

b
f'(a)(b-a) + | £''(x)(b-x)dx
a
(letting v = -(b-x), u = f', and noting v(b) = 0)

2

2
(b-a) (b—x)

b
= f'(b)(b-a) + f''(x) + [ £rovx) dx
a

2
(b-x)
2

(letting v = - , u = f''(x)).

(n)

If we denote the nth derivative of f by f (x), we will by induction, have

n

(n) (a)(b-a) b (n+l) (b—x)n
f +] f (x)
n! a n!

f(b) = f(a) + f'(a)(b-a)+...+ dx

If we continue this process indefinitely, we obtain the Taylor series

expansion

where £ (x) = £(x) and 0! = 1.

(n)

This process clearly requires f (x), the nth derivative, to be always

defined on [a,b]. In addition, the sequence

n

m (n) (b-a)
y =12 f (a)
m n=0 n!
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must converge to something for the Taylor series to be meaningful. If so, f

is said to be analytic.
This process also allows local approximations.

THEOREM 2.22: (mean value theorem of integral calculus). If f is continuous,

there is a y €{a,b] so that

I: £(x)dx = £(y)(b-a)

PROOF:

A
%
A

sup{f(x)]| a <

Let f(yo) < b}

inf{f(x)| a < b}

I

A
»
IA

f(Yl)
Then
f(y,.)(b-a) = Ibf( Jdx < Ibf(x)d < Ibf( Ydx = f(y,)(b-a)
Yo/ib-a) = [ tlyglex = Jg x 2 JgttyyJax = Iy, )(b-a
Thus
gly) = I:f(x)dx - f(y)(b-a) satisfies
g(yl) >0 > gly,)
By the mean value theorem, there is a y, between yo and yl, with
g(y) = 0. Q.E.D.
Since
f(b) = £f(a) + f'(a)(b-a) + IZf"(x)(b—x)dx

a result similar to the above theorem shows 3 y € [a,b] so that

b 2
[ £ (x)(b-x)dx = - (b-a) f''(y)
a

N

This provides the second order approximation

1 2
f(b) = f(a) + f'(a)(b-a) + 5 (b-a) f£''(y)

for some y € [a,b].



27

DEFINITION 2.8: f is concave if VYx, y, A €[0,1]
EQx + (1-0)y) > N £(x) + (1-ME).
Concavity is illustrated in figure 2.6.

Ax + (1-M)y is a point somewhere between x and y on the line segment
connecting (x, f(x)) and (y, f(y)) in the plane, concavity says the function
lies above this line segment, i.e. f(Ax + (1-MA)y) exceeds Af(x) + (1-A)f(y).

Consider a person facing a gamble where they get $x with probability \
and $y with probability (1-A). The average payout of this gamble is A$x +
(1-\)8y. If f is the person’'s value of money, then concavity means that the
person prefers the average payout to the gamble, that is, the value (or
utility) of the average payout exceeds the average value from the gamble

(M(x) + (1-)\) £(y)). Such a person is said to be risk averse.

THEOREM 2.23: If £'' is continuous, then the following are equivalent
(i) f is concave
(ii) £f(x) < £(y) + £ (y)(x-y)

(iii) f''(x) < 0

PROOF:
(i) > (ii): LET g(a) = f(ax + (l-a)y) - (af(x) + (1-a)f(y))

0.

g(o) = £(y) - £(y)
By concavity, g(a) > 0, so g'(0) > 0. Therefore 0 < g'(0) =

£'(y) (x-y) - (£(x)

£(y))
or
f(x) < £(y) + £'(y)(x-y)

(ii) % (iii) From our approximation result, 3 z € [x,y] so that



;{"XK#(!J\)y'}’ T

N+ b o—
(1-NFey)

Qxf)u/& 2.6
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1 2
f(x) = £(y) + £'(y)(x-y) + 3 (x-y) f£i1'(2)

but £(x) - £(y) - £'(y)(x-y) < 0 by (ii), so

1 2
E (x-y) f£''(z) <O

and thus f''(z) < 0

sending x *> y gives f''(y) < 0 since x < z < y sends z to y, by
Theorem 2.10.

(iii) » (ii): if f'' < 0, again using the approximation,

1 2
f(x) = f(y) + £ (y)(x-y) + E (x-y) f'i(z) < f(y) + £'(y)(x-y)

since a non positive term has been dropped.
(ii) » (1). LET z = Axx + (1-MN)y.

Then x - 2z

i

(1-7) (x-y)

AMy-x) = - Mx-y)

y -2

from (ii):

f(x) < £(z) + £'(2)(x-2) = £(2) + (1-N)f'(2)(x-y)

£(y) < £(z) + £'(2)(y-2) £(z) - N £'(2)(x-y)

so Af(x) < Af(z) + AN(AI-M)f'(z)(x-y), and
(1-Mf(y) £ (I-Mf(z) - NI-Nf'(2) (x-y)
summing: Af(x) + (1-M)f(y) < £(2) = f(hx + (1-MN)y)
NOTE: (i) » (iii) since (i) = (ii) » (iii)
and (iii) = (i) since (iii) = (ii) > (i). Q.E.D.

This theorem provides three different characterizations of concavity.

d
Part (iii) says the slope of f is non increasing, as a—-f'(x) < 0.
x

Part (ii) says, for x < y
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f(x) - £(y)
X -y

2 fi(y)

so that the slope from x to y (x < y) is greater than the slope at y (see

figure 2.6).

DEFINITION 2.9: f is convex if V x, y, A € [0,1]

fOx + (1-My) < Mx) + (I-Mf(y)

THEOREM 2.24: The following are equivalent
(i) f is convex
(ii) -f is concave
(iii) f(x) > £(y) + £'(y)(x-y)

(iv) £''(x) > 0

The proof is straightforward from the definitions and the previous

theoren.

The final topic of this section is L'Hapital's rule.

THEOREM 2.25: Suppose lim f(x) = 1lim g(x) = 0, and f and g are
XX

XX
0 0
differentiable.
f(x) £'(x)
Then lim -~ = 1lim
X% g(x) x*x g'(x)

SKETCH OF PROOF: For x very close to xo, f(x) is approximately f(xo) +

f'(xo)(x-xo) = f‘(xo)(x—xo), and similarly for g(x). Thus
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£(x ) + £'(x )(x-x ) £r(x )
£(x) 0 0 0 0

is approximately

8 (x) g(x ) + g'(x )(x-x )  g'(x)
0 0 ] ]
£l (x )
. . . £r(x) £ (x) 0
This argument applies if is continuous, i.e. lim
g'(x) X g'(x) g'(x )
0] 0
APPLICATIONS:
1
log x x
lim x log x = lim = lim =1lim-x =0
x>0 x20 1/x x>0 1 x>0
2
x
-Ax
-\x Ae
lim - (l-e ) = lim = A.
x>0 x x>0 1
2.5 THE EXPONENTIAL FUNCTION
The exponential function is defined by
i i
x n X © X
e = lim £ -— = F —_— 1)
ndo i=0 1i! i=0 i!
i
n x
It can be shown that I 0 = converges for all x. Immediately
i= it
eo =1 (2)
Also
exey = ex+y (3)
d x X
—~ e =& (4)
dx

From (2) and (3)
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e ¥ = 1/e%. (5)

From (1) ex > 0 for x > 0, and from (5), ex >0 for x < 0. Thus, ex

is positive. Using (4) inductively, all derivatives of e* are positive. Thus

e 1is convex (since second derivative is positive).

LET log x, sometimes written ln x, be the inverse function of ex. log x

is defined for x > 0, since this is the range of e, By Theorem 2.20:

d 1 1/
—_— Og X = X
dx

Thus, log x is an increasing concave function, and log 1 = 0. These are

graphed in figure 2.7.

1 ® 1
e =¢e =13 -— = 2.,718...
=0 n!

In addition, for scalars A\, a

(ea)k - eka - (ek)a

Thus, if A = log x,

(ea)log X _ o2 log x = (

elog x)a -

or

a a log x
X = e B

It follows, then, that



gy
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d a a log x d aa a-1
~— X = e (a -~ log %x) =X - =a x
dx dx b

2.6 CONTRACTION MAPPINGS

DEFINITION 2.10: f: R * R is a contraction mapping if 3 A, O <A

<1, [fx) - £(y)] < Ax-yl|.

Intuitively, a contraction mapping squeezes the domain, since f(x) and

f(y) are closer together than x and y.

* % *
THEOREM 2.26: If f is a contraction mapping, then 3! x , f(x ) = x .

PROOF: Choose xo arbitrarily, and define a sequence by x = f(xn 1).
n=1,2,3.... We show first that xn is cauchy, and hence has a limit,
%
x . LET n > m. (1.67)
Ixn -x | =Ix - -1 + S + ... + X4l " xml <
n-1 n-2
Ixrl - xn_ll + |xn__1 - xn_zl + ...+ |xm+1 - xml < (M + +
m
+ A )le - xol.
Since ka - xk—ll = If(xk—l) - f(xk—2)| < xlxk_l xk_zl, and by
. . k-1 n-1 m
induction, lxk - xk—ll <A le - xol. But A + ...+ N\ =
n
A" - A" /(1-\). Thus
m n
|xn - xml < (N - )/(1—x))|x1 - xol <

m

A

— |x - x|

1-)\ 1 0

N e(1-\) .
Thus, if we choose Ny so that A < = %7 we have, if n,m > Ng,
1 0
N
A" x°
jx - x| & —|x = x| < =— |x -x]|<e¢€.
n m 1-\ 1 0 1-2 1 ]

If x] = Xo, Xo is our limit.
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*
That is, x is cauchy, and has a limit x . Moreover, since f is
continuous:

% *
f(x ) = f(Qlim x ) = lim £(x ) = lim x =X
ndo n n-o n nro n+l

*
Finally, x 1is unique, for suppose
% * % *
f(x ) =x and f(y ) =y . Then
* % * % % %
Ix -y ] = |f(x) -£fy)l <nIx -y |.
% * * %
If |[x -y | #0, then 1 < A\, a contradiction. Thus |x -y | =0,

* X
or X =Yy . Q.E.D.

If f is a contraction mapping, then there is exactly one solution to the
equation f(x) = x. Such "fixed point"” equations appear in calculating prices
equating demand and supply. Suppose c(q) is the industry marginal cost of
supplying q, and d(p) is the demand at price p. Then, at equilibrium,

p = c(q) and q = d(p), that is p = c(d(p)). If £(p) = c(d(p)), then the
existence of an equilibrium price reduces to the existence of such a fixed

point to f.



