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1.1 Boolean Logic
Mathematics is the study of various types of sentences. We are all
familiar with sentences, but some examples won't hurt:

Example 1.1: Some sentences

Economists have no sense of humor. (1.1)
Women have fewer teeth than men. (1.2)
A blue moon gathers no moss. (1.3)

The aim of mathematics is to prove that some sentences are true, which
essentially means that it is impossible for circumstances to arise that
contradict the sentence. How might one go about proving the sentence with
(1.1) to its right? Conceivably, one might construct a test for "sense of
humor” and proceed to test all economists. |

Indeed, the word "proof"” originally meant "to test”, as in "the proof of
the pudding is in the eating”. The problem with this is that, even if you
establish that all living economists have no sense of humor, there is still a
question of whether an economist could be born that had a sense of humor.
Thus, one might hope to show that it is impossible for economists to have a
sense of humor, i.e. that something in the definition of the term economist
implies the utter lack of a funny bone. If you could somehow show this, you
would have established that we never need to worry about a homorous economist
ever appearing, its logically impossible.

This example captures the spirit of mathematics. We shall write down
definitions of terms and show these logically imply other sentences are true.
Before proving anything, we must establish some rules of reasoning, or laws of

logic. That is, what are we allowed to conclude?



Some of the terms we shall use may be unfamiliar to the reader, so we
summarize their meanings in Table 1.1 for future reference. We shall begin
our inquiry into logic by considering very abstract sentences. Indeed, let A,
B stand for sentences, any old sentences. We can construct new sentences from

old ones with the following connectives:

Connective Meaning Definition
~ not ~A is true when A is false
v or A V B is true when either A is true

of B is true or both
P18

A and A A B is true when both A and B
are true
> implies A » B is true if, whenever A is true,

B is true

® if and only if A implies B and B implies A

We take a sentence to be either true or false, that is, if the sentence
A is not unconditionally true, then it is false. For example, "economists
have no sense of humor" is false if there is a single economist with a sense
of humoé. However, the sentence "Most economists have no sense of humor”

might be true if, say we define most to be more than 90%.



TABLE 1.1

Theorem: A sentence proved to be true.

Proposition: A sentence proved to be true.

Lemma: A Theorem which is used to prove another Theorem.

Corollary: A Theorem whose proof is obvious from the previous theorem.
Definition: A sentence taken to be true; one of the terms in the sentence is
interpreted to make the sentence true.

Axiom, Assumption, Postulate: These are sentences taken to be true,
alternatively, these sentences define the world we are considering.
Hypothesis: A sentence that will be checked for truth.

Tautology: A sentence which is true without assumptions, e.g. x = x.
Contradiction: A sentence that cannot be true, usually in the form "A is true

and A is false"



The precise meaning of the 5 connectives can be given in a "truth
table"”. Since only two initial sentences (A and B) were used, there are only

4 possible cases. Let T stand for "True” and F for "False".

A B ~A AAB AVB A3B A®B
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

row’

Gase 1: Both A and B are true. This corresponds to row 1 in the truth table
above. Note ~A is false (since A is true), AAB is true (since both are
true), AVB is true (since at least one is true), A3B is true (since the
hypothesis A is true and the implication B is as well), and A®B is true.
éZ;e 2: A is true and B is false. This corresponds to row 2 in the truth
table. ~A is false since A is true, AAB is false since B is, AVB is true
since at least one (A) is true, A®B is false, since A is true and B isn't,
thus A can't imply B.

We shall leave the remaining two rows to the reader, remarking only on
A3B. When A is false, we take A®B to be true, since it is not contradicted.
A®B is contradicted when A is true and B is false, and otherwise it is not
contradicted. The effect is as if a monstrous bully asserted to you in a
belligerant tone "A®B". Now you know full well that A is false, and so the
implication A®B isn't very interesting. But you won't contradict him, either,
since the assertion is not false, that is, its not contradicted. Effectively,

A3B says "If A, then B. If not A, who knows?"” and is true so long as we do

not have ~A and B.



¢, which may be read "if and only if"” means (A3B) A (B»A), that is,

when A is true, B is true, and vice versa. Thus A and B are either true

together or false together when A#B. Thus, we can speak of A®B as "A and B
are equivalent"”. & is also written iff or =.

We are now in a position to prove some tautologies: sentences which are
true no matter what A and B are.

Theorem 1.1: The following are tautologies

(~(~A))®A (1.8)
X M
(~(AAB))&( (~A)4(~B)) (1.5)
N
x (~(AVB))&((~A)¥(~B)) (.16)
(A>B)&((~A)VB) (1.7)
(A3B)¥((~B)>(~A)) (1.8)

Proof: The only method we have available to prove these equivalences is the

truth table, that is, we will explore all the possible cases. We start with

(1.4).
A ~A ~(~A) Ao (~(~A))
T F T T
F T F T

Since, by definition, ~ reverses T for F and F for T, we obtain the
second column. Reversing again yields the third column. Examining the first
and third columns, we see (1.4) is true.

Now turn to (1.5)

(~AV(~B) AAB ~(AAB)

Lo I W
Lo B I B )
-
Lo IO B IO B
HHBH9
O B I |
HRAa9



Again, the third column reverses the first, while the fourth reverses
the second. (~A)V(~B) becomes true if either ~A or ~B is true—-all but the
first row. The definition of AAB is given in column 6, and putting a not out
front, ~(AAB), reverses this for column 7. We then see that

((~A) V (~B)) ¢ ~(AAB)
is true for all positions, and (1.5) is proved.

We can shorten the proof of (1.6) by using (1.4) and (1.5). Note (1.5)

implies, for sentences C and D:

~(CAD)&(~C)V(~D) (1.9)
Let C = ~A, s0 ~C = ~(~A) = A by (1.4)
Let D = ~B, so ~D = ~(~B) = B by (1.4).
Thus (1.9) is

~((~A)A(~B))®AVB (1.10)
Since, for any C, D,

(Cop)e((~C)e(~D)) (1.11)

(1.10) becomes
~(AVB)&~~((~A)A(~B) )& ((~A)AN(~B))
which proves (1.6). The reader should check (1.11) using a truth table.
We shall also leave (1.7) for the reader to prove, and turn to (1.8).
Using (1.7) and
(AVB)®(BVA) (1.12)
(yet another obligation for the reader)

we have



1.7 (1.8) (1.4) (1.7)
(A3B) @ ((~A)VB) & (BV(~A)) & ((~(~B)IV(~A)) & (~B)>(~A)

Q.E.D.
'Q.E.D.' alerts the reader that the proof is over and its time to get on

to other stuff. We shall state a few rules for the reader to prove:

(ANB)®(BAA) (1.13)
((AAB)AC)®(AA(BAC)) (1.14%)
((AVB)VC)®(AV(BVC)) (1.15)
(AA(BAC) )@ ((AAB)V(AAC)) (1.16)
(AV(BAC) )& ((AVB)A(AVC)) (1.17)

(1.12) and (1.13) are called commutativity. (1.14) and (1.15) are the
associative laws, or associativity, and finally (1.16) and (1.17) represent
distributativity.

There are several other tautologies of use.

(AA(A=B))=B (1.18)

((~A)>(BA(~B)))>A (1.19)

(1.18), called "modus ponens” or the syllogism, states that, from A and
A=>B, we may deduce B. This is the rule of logic (proveable given our
definitions of A and ») that forms the basis of logical reasoning.
Verbally, "if A is true and A implies B, then B is true."

Statements of the form BA(~B) are always false; BA(~B) is called a
contradiction. (1.19) says that, if ~A leads to a contradiction, then A is
true. That is, one way to prove A is to hypothesize ~A, and show that this
1éads to a contradiction.

(1.8) is called the contrapositive, and says that A implies B is the

same as "whenever B is false, A is false.” This is intuitively reasonable



(as are all tautologies, if you think about them enough), since A implies B
means that, to not get B being true, A must have been false.

This is about as far as "Boolean Logic"”, the logic of connectives
(connectives being things like and, or , not, implies, and if and only if) can
take us. However, we now have 16 tautologies (1.4—1”g) that we can apply in
our reasoning to come. |

We end this section by noting the boolean logic has an arithmetic. Let

T be 1 and F be zero, so if A is true, it takes on the numerical value 1, and

otherwise it is 0. Then

~A = 1-A
MB = min{A’B}
AVB = maX{A’B}

A»B = max{1l-A, B}

where min{A,B} is the smaller of A,B and max{A,B} is the larger.



Quantifiers

Quantifiers will establish the number or quantity of things x having
some property A(x). For example, let x range over economists, A(x) mean "x
has a sense of humor”. Then (1.1) asserts "for all x, A(x)". We abbreviate
"for all x" by

(Vx)A(x) means for all x, A(x) is true. (1.20)

Thus, we have allowed our sentences to have a variable in them,
something that can take on any value in a universe or domain of discourse. In
the example above, the universe was the collection of economists. Generally,
we shall denote our universe by U. A(x) is then a property of things in U,
and x either has the property (and A(x) is true) or doesn't (and then A(x) is
false).

Economists are generally interested in questions of existence. For
example, does there exist a market clearing price? Is there an economist with
a sense of humor? When there is an x with the property A(x), we write

(Ix)A(x) means for some x in U, A(x) is true (1.21)

We may observe immediately that

~((3IX)A(x))®(VX) (~A(X)) " (1.22)

~((Vx)A(x))e(Ix) (~A(x)) (1.23)

(1.22) says, in words, if it is not true that there is an x satisfying A(x),
then all x satisfy ~A(x), and vice versa. Similarly, (1.23) says, if it is
not true that A(x) is true for all x, then there must exist a counter example,
an x satisfying ~A(x), and vice versa.

From (1.22) and (1.23), the reader may easily verify

(Vx)A(x)e~(3x) (~A(x)) (1.24)

(IX)A(X) o~ (Vx) (~A(X)) (1.25)
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In addition

(3x) (A(x)VB(x))e((IX)A(X)V(IX)B(X)) (1.26)

(Vx) (A(X)AB(x) ) ((Vx)A(x)A(VX)B(x)) (1.27)
(3x) (A(X)AB(x) )>(IX)A(xX)A(3x)B(x) (1.28)
((VX)A(X)V(VX)B(x))>(Vx) (A(xX)VB(x)) (1.29)

(1.26) shows that, if there is an x satisfying A(x)VB(x), then either there is
an x satisfying A(x) or there is an x satisfaying B(x), and vice versa. The
point is that the same x works on either side.

Similarly, if A(x)AB(x) is true for every x then (Vx)A(x) and
(Vx)B(x). However, if (V¥x)A(x) and (Vx)B(x), clearly A(x)AB(x) is true for
every Xx.

c

The attra}ive symmetry we have discovered so far (in section 1,

replacing an?s Y}th ors and ors with ands left expressions (involving A, V
viachang

and ~ lﬁu.)vbriaks down with quantifiers, as we see from (1.28) and (1.29),
which are not expressed as if and only if. To give an example of (1.28),
suppose X ranges over economists (U is the collection of economists). A(x)
means x is over six feet tall and B(x) means x is under six feet. Then it may
well be true that (IxX)A(X)A(Ix)B(x), i.e. there is one economist over six feet
tall and another under six feet tall, but clearly there cannot be any
economist satisfying (3Ix)(A(x)AB(x)), since this would make him both over and
under six feet tall. One other quantifier of use is "there exists a unique
x", and we write

(I1x)A(X)
to mean there is one, and only one, x in U satisfying A(x). Notationally
(31)A)S((IX)A(X)IN(VY) (V2) ((A(YINA(Z))=y = 2z)).

Verbally, if there is a unique x, there is at least one satisfying A(x), and

if y, z are any two satisfying A, (i.e. A(y)AA(z)) they y and z are the same.
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Always, in the background, the universe U determines the x's we are
talking about. Sometimes it will be useful to make this explicit, that is, to
remind ourselves x must be in U and we write

xXevu
to mean "x is a member of U” or x is in the collection U. If U is the
collection of shoes, then x € U is true when x is a shoe, and otherwise false.

The reader should be cautioned that (Vx)(3y)A(x,y) is not the same as
(Iy)(VxX)A(x,y). Let, by way of example, A(x,y) be the statement y=x2. Then,
for every x, there is a number y satisfying y=x2. However, there is no y
which makes the statement (Vx)y=x2 true, for this would imply x2 is the same
no matter what x is, which is clearly false. Indeed, the reader may verify
that

(3y) (Vx)A(x, y)=(Vx) (3y)A(x,y)
but not vice versa.

1.3 Sets

Sometimes we may be interested in portions of the universe. Suppose U
is the collection of shoes, and let B(x) mean x is blue. Then the collection,
or set, of blue shoes is denoted

{x € U/B(x)}
or just

{x/B(x)} (1.30)
where the universe is understood in (1.30). (1.30) should be read "the set of
x such that B of x is true”. One interesting set is the empty set, a set that
has no members:

¢ = {x/A(x)A~A(x)} (1.31)
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The empty set ¢ serves the same role in the theory of sets as 0 serves
in the counting numbers; it is a placeholder.

Definition 1.1:

{x/A(x)} U {x/B(x)} = {x/A(x) V B(x)} (1.32)
{x/A(x)} N {x/B(x)} = {x/A(x) A B(x)} (1.33)
{x/A(x)}° = {x/~A(x)} (1.34)

This defines three notions from elementary school mathematics, that of
union (U), intersection (N), and complement (c) in terms of logical
connectives (V, A and ~). (1.32) says that something gets into the union by
being in one or the other set, gets into the intersection by being in both,
and gets in the complement by not being in the set. Since we have identified
sets by sentences which characterize them, it is natural to call

{x/A(x)} = A

By definition, x € A if A(x) is true. Note that we are using A both
for the set and the sentence defining the set, but this ambiguity in the

meaning of the letter A causes no problem, since the set is defined by the

sentence.

Theorem 1.2:
XEAUB® ((x €AV (x €B)) (1.35)
x €EANB®® ((x € A) AN (x €B)) (1.36)
x € A° & ~(x € A) (1.37)

(1.32)
Proof: X € AUB & A(x) VB(x) ® (X € A) V (x € B). Others are

similar.

Theorem 1.2 is illustrated by the Venn diagrams in figure 1.1. The
universe U is the points inside the rectangle. The set A is the points
inside the circle marked A, and the set B is the points inside the circle
marked B. AUB, ANB and Ac are illustrated. When ~(x € A), we will write

x ¢ A.



J
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Theorem 1.3:

ana=g¢ (1.38)
AuaAS =U (1.39)
{x/A(x) » B(x)} = ASUB (1.40)

Proof: To show two sets are the same, we show that they have the same

elements.

c (1.36) ¢ (1.34) (1.31)
XEANA & (XEA AN(XEA) & AX)A~A(X) © x€ O

%

x€AUA e (x€B V (x€A®) @

A(X) V ~A(x) ® x € {x/A(x) V ~A(x)}.

Since A(x) V ~A(x) is a tautology,

x€AUA® & x eV

(1.40) follows from (1.7) Q.E.D.
Theorem 1.4 (De Morgan's Laws):

aup®=a°ns® - (1.41)

A n B

1]
g

UB (1.42)
De Morgan's laws are the set theory version of (1.5) and (1.6), and the proof
follows directly from these facts.

Intersection and union are not limited to finitely many operations, but
to generalize this, we need the notion of an index set. Let I' be a set of
names of sets, so that, if 1 € T, Ai is a set. For example, I' might be all
the names of the states, and Ai’ for state i, might be the names of people
living in state i. Alternatively, I' might be a list of album titles, and Ai
the set of people who own album i. Thus, for this example, the intersection

of Ai for all i € I' would be those people who own all the albums on the
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list, since a person gets into Ai by owning album i, they must own all the
albums to get into the intersection. To get into the union of the Ai's, you
must get into at least one of the Ai's, and thus you must own at least one
record. Consequently, the union of the Ai's is the set of people who own at

least one record# (in the list I').

For the intersection of the A 's, i €T, we write N A , and for

i ier i
union we write Ur A . The discussion suggests the following definition:
i€ i
Definition 1.2:.
U A = {x/(3ier)(x€A )} (1.43)
ier i i
N A = {x/(Vi€r)(x€A )} (1.44)
ier i i
Theorem 1.5 (De Morgan's Laws):
c c
(U A) = N A (1.45)
ier i i€er i
c c
(N A) = U A (1.46)
ier i ier i

Proof: We prove (1.45) and leave (1.46) to the reader. To prove (1.45), we
shall show

c c

x€(U A) @#x€ N A

ier i ier i

1 1

This forces the sets to have the same elements, and hence be the same set.

c (1.37) (1.43)
XxX€ (U A) e ~(x€ U A) o
ier i ier i

(1.22) (1.37)
~((3i€N(x €A )) o (Viel(~(xeA )) o
i i
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c (1.44) c
(VieT)(x€A ) ® x€eN A . Q.E.D.
i ier i

Previously, we have identified sets with statements A(x), and showed the
relationship between connectives A, V and ~, and set operations N, U and
complement. Definition 1.2 shows that role that quantifiers play in set
theory: they allow big unions and intersections, since the set TI' may have

infinitely many elements.
Definition 1.3: A C B (read A is contained in B) if x€A®x€B. In this case,
we say A is a subset of B.
Theorem 1.6: Let A = {x/A(x)}, B = {x/B(x)}.
Then A C B i; and only if (Vx)(A(x)3B(x)).
Proof: A C B ¢ x€EA » X€EB ® A(x) > B(x). Q.E.D.
Finally, we note that
A=B®ACBABCA® (VX)A(X)®B(x). (1.47)
This completes the development of the relationship of logical
connectives and set theory, since we have seen that the connectives ~, A,
V, », @ correspond to the set theory notions complement, intersection,
union, containment, and equality.
We conclude this section with a celebrated paradox invented by Bertrand
Russell.
Theorem 1.7 (Russell's paradox): The collection of all sets is not a set.
Proof: We shall show that presuming that the collection of all sets is a set
leads to a contradiction, which, by (1.19),allows us to conclude the theorem.
Suppose the set of all sets is a set. Call if V. Then we may define
the subset A of V by

A= {x € V/x ¢ x} (1.48)



16

where x ¢ x means ~(x €x). A is a set, so we may ask: is A an element of
A? By the definition of A,

AE€EA®~(AEA (1.49)
by substituting A for x in (1.48). (1.49) is in the form B ¢ ~B, and this
is a contradiction since, if B is true, B3~B yields BA~B. On the other hand,
if ~B is true, ~B and ~B3B implies (~B)AB. Either way, we have a
contradiction.

Q.E.D.

Russell's paradox caused quite a brouhaha in mathematics, because
mathematicians were used to calling any old collection of things, including
collections of sets, a set. The problem with this arises when a set is
defined in terms of itself, as in (1.48). Since A is a set, A € V, and thus
we are defining A in terms of itself--one of the elements used to construct A
is A itself. This self-reflexive construction permits contradictions to arise
in a manner exactly analogous to the problem of the sentence:

This sentence is false. (1.50)

If (1.50) is true, it is false, and if its false, its true. Thus (1.50)
leads to a paradox because it refers to itself, in a sense, before it is
already constructed. Thus, it refers to something that is not yet defined,
the sentence itself. The solution to this paradox is to restrict our
attention to constructs that have been defined, and thus build up new
constructs from old ones, being careful to never define a construct in terms
of itself. This turns out to be an unnecessarily severe restriction (since it
turns out that there are some meaningful sentences that do imply things about

the sentence itself), but the distinction will not be useful for this text.
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Functions
Sometimes we shall refer to a set X as a space, and this means nothing
beyond X is a set.
Definition 1.4: Let X, Y be sets. The cross product (or cartesian product)
of X and Y, denoted X x Y is the set of ordered pairs
X xY = {(x,y)/x€EX A y€Y}.
Example 1.2: Let X = {a,b,c¢} and Y = {d,e}.
Then
Xx Y= {(a,d), (a,e), (b,d), (b,e), (c,d), (c,e)}.
Example 1.3: The plane. Let X = Y = R be the (real) number line. Then

R x R (which we will call RZ) is the plane. See figure (1.2).
We can repeatedly apply Definition 1.4 to build up ordered triples,
ordered quadruples and so forth. Generally
X X ..X X = ce /%X _€X_Ax_€X _A...Ax €X .
1 x 2 X...X o {(xl,xz, ,xn) x1 1 x2 9 xn n} (1.51)

and (x_,x

1 2,...,xn) is called a tuple, n-tuple or vector.

We use the following shorthand

il >x3

X =X xX x...xX (1.52)

i=1 i 1 2 n

>4
]

[ g=]
4

. (1.53)
i
Example 1.4: Suppose X is the set of characters on a typewriter keyboard
(including the space, period, etc.). Then X2 is the set of things of two
characters in length that can be typed. Generally, Xn is the set of things of

n characters that can be typed.



‘ (X,,Y'L)
o - :
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Example 1.5: Suppose there are n goods, numbered 1, 2, 3,...,n. Let a
rerson's consumption of good i be xi. If xi < 0, the person has negative
consumption, that is, he supplies the good. Thus (xl, xz,...xn) represents
one person's consumption, and the space of such n tuples is *he set of

possible consumption bundles. This space is known as R".

Definition 1.5: A function F from X to Y, denoted F:X»Y, is a subset
FCXx Y satisfying

(vx € X)(3y € ¥) (x,y) €EF (1.54)

((X,y)E F N (x,2)E F) 2 y=z (1.55)
F is 1-1 ("one to one") if

((x,y)EF A (z,y)EF) > x =z (1.56)
F is onto if

(Vy€eY) (Ix€X) (x,y)EF (1.57)

From (1.54) and (1.55), a function associates a single element of Y with
each element of X. This allows the more familiar version of writing functions
y = f(x) @ (x,f(x))EF (1.58)

As figure 1.3 illustrates, a function defines a graph. Figure 1.4

illustrates a graph that is not a function. Generally, we'll call the range

of £

range of f = {y€Y/(IxEX) y = £(x)} (1.59)
Theorem 1.8

range of £ = Y & f is onto (1.60)

There is a function g: Y-X satisfying:

g(f(x)) = x A £f(g(y)) = y if and only if f is 1-1 and onto.



v cul? (l /‘2" / B
y
T L (1 RS -
colea ot T

VAN A
3‘/\Cu X’

Feed

"’, . Ve (’,
(o .
¢ va lu&

W



19

Proof: (1.60) is left as an exercise. To prove the second assertion, we use
two parts.
(Proof of »): Suppose g(f(x)) = x and g is a function.
For any y, note x = g(y) satisfies
f(x) = £(g(y)) =y
Thus (Vy€Y) (3x€X) f(x) =y
proving f is onto.
In addition, since g is a function if f(x) = f(z), we have
x = g(f(x)) = g(f(z)) = z, so f is 1-1.
(Proof of ¢): Suppose F is 1-1 and onto.
Define G: Y-»X by (y,x)EG®(x,y)EF.
Since F is onto
(Vy € ¥) (Ix € X) (x,y) € F, or
(Vy € Y) (3x € X) (y,x) € G.
Thus G satisfies (1.54).
Since F is 1-1
((x,y)EF A (z,y)EF) > x=z
or
((y,x)EGC A (y,2)EG) > x=z.
Thus G satisfies (1.55).
Finally
(x,f(x))E F 3 (f(x), X) €G > x = g(f(x)).

Let y = f(x). Then

y = £(x) = £(g(f(x)) = £(g(y))

since

*
1}

g(£(x)). Q.E.D.
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The function g of Theorem 1.8 is said to be f's inverse, or f_l. because

it cancels f:

fCE ) = £HEM)) = x (1.61)

1.5 0dds and Ends
In this section, we shall remind the readers of some properties of
numbers, introduce some notation, and discuss some conventions that will
persist throughout the text.
The natural numbers are the counting numbers:
N = {0, 1, 2, 3,...} (1.62)
The integers are the natural numbers plus negative natural numbers
Z=1{...-3, -2, -1, 0, 1, 2, 3,...} (1.63)

The rational numbers Q are fractions

Q = {m/g/hez A nEN A n#0} (1.64)
The rationals (for "ratio"”) are fractions like 2/3, -5/2 = ~-2%,
3141

3.141 = ———, and so forth.
1000

We will primarily be concerned with the "real numbers”, R. A careful
definition will be provided in the next chapter, but, for the moment, think of
the real numbers as a line, and each point on the line corresponds to a real
number.

Absolute value is defined by

x if x>0
2
'xl = / X = (1.65)

-X if x <0
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Square roots are always taken to be nonnegative. The second part of the
definition comes in two parts, and is understood to mean
(x>203 [x|] =%x) A (x<0> |x|] = -x).
Square roots are defined by
VX =y ® (y>20A y2 = Xx) (1.66)
where y2 is merely y times y. Absolute value has the important property
fx + yl < Ix| + |yl (1.67)
since
2xy < 2Ixy| = 2|x|lyl
or
x>+ 2xy +y2 < v 2lxllyl + ¥ = 1x1% 4 20xlly] + 1yl2
or
x + < Uxl + Iyh?
or
Ix + yl < Ix| + |yl.
In addition, for real numbers A and x:
Il = |allx]. (1.68)
The real numbers have a property called the archimedian property:
(VX€ER) (3n€N) |x| < n (1.69)
Thus, if ¢ > 0, there is a natural number n with 1/¢ < n, or ¢ > 1/n.
That is
(Ve > 0)(3nEN)(1/n < €) (1.70)
One notational convenience is summation notation. Suppose X; is a

number for each i in an index set I'. Then
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I x
ier i

represents the sum of all the xi's, i€r. For example, if I' = {1,2,3}

T x =x +x +x
i€er i 1 2 3

when T = {1,2,3,...,n}, it is conventional to write

n
T X =X +%X +%X + ... +X% (1.71)
i=1 i 1 2 3 n

The reader unfamiliar with summation notation may wish to convert into

(1.71) notation, and prove the following

! I x = 1 I x = 3 x (1.72)
i€r j€r (i,j) jE€r i€r (i,j) ver xr VvV
1 2 2 1 102

n m
B RIS RN
= =1l i

X
1 1i ] =1 1 j=

'(‘El yj) = ,E 31 Xy, (1.73)

A special case of (1.73)is

(x. + xz)(yl + yz) xl(y1 + y2) + xz(y1 + yz)

1
= xly1 + xly2 + xzy1 + x2y2 (1.74)
If A is a constant:
n n
MY x)= ) \x (1.75)
i=1 i i=1 i

The reader may have already noticed that important lines of the text are
numbered sequentially as l.n. We will continue this, where the number before
the decimal point indicates the chapter, and the number after the equation.
Theorems and definitions will be numbered in a similar fashion. Thus, we may
refer to Theorem 2.11 (fhe eleventh theorem of chapter 2), Definition 3.2 (the
second defintion of chapter 3), or (4.21), which is the 21st numbered line in

chapter 4.
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Throughout the text, unless otherwise stated, a, B, Y, A and 6 will
refer to real numbers. q will be a rational. i, j, k, m and n will be
integers or natural numbers. x, y, and z will be members of the set being
studied (e.g. real numbers in chapter 2, vectors in chapter 3, members of R"
in chapter 4, etc.). This convention will be contihued with subscripts (e.g.

e, , B, are reals, q, is a rational).
J 1 i
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1.6 A Taxonomy of Proofs

This chapter has developed a large number of rules of logic, that is,
methods of manipulating connectives and quantifiers. All of our proofs will
involve these rules, but in addition to this, there are several broad
categories proofs generally fall into, and we shall discuss these here.

First, there is the direct proof. Typically, a direct proof will be
used for a theorem in the form A®B. The strategy, then, is to find
intermediate "steps" so A®A

and AlaA and A2$A3,...are all tautologies, and

1 2

there is a final An = B. Thus, notationally, the direct proof is a sequence

A2>A 2A 3> ... 3A 3> A 3 B. Another description would be as a
1 2 n-2 n-1

list

where each intermediate step Ai is either a tautology or follows from the
previous steps, i.e.
... A, > A,
(A A Al A Al—l) Al

is a tautology.
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Typically, such a strategy requires a very large number of steps, so
often we will collapse the steps, which, strictly speaking, leaves a piece of
the job for the reader to do (to insert the remaining steps). However, we
shall indicate what is used in filling in the missing pieces. For example, if
we write

(1.19)
> A

i i+l

A

This means that the tautology proved in (1.19) makes the step from Ai to Ai+1'
Direct proofs may involve cases, that is, it may be simpler to perform

the proof in pieces. For example, if we wish to prove
(¥x) (A(x) > x=0)

It may be easier to prove

case 1: (Vx) (A(x) » x> 0)

and

case 2: (¥x) (A(x) > x<0).

Then, using

x>2yAx<y)adax=yY

we have proved (Vx)(A(x) 2 x=0).

In some situations, to prove a statement in the form A®B, it may be convenient

to split A into cases. That is, show Aﬁ(Al v AZ) and then show A1 aﬂﬁ and
A

A_ > ¢. For example, to prove
A

we write

(0 < x<1) & (x=0V (0<x<1))
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and do the case, first x=0 and then 0 < x < 1, as in the latter case, we may
divide by x.

One other aspect of direct proofs bears mention. If the theorem comes
in the form A®%B, it is generally easier to prove two separate theorems:

A®B and B®A. 1In such an instance, these two parts will be denoted by (2) and
(¢) (the second for A¢B).

A useful tool for proving theorems in the form A®B is the contrapositive
(1.18). To prove A3B, it is sufficient to prove (~B)®(~A) instead. These
proofs will begin by "Proof: By contrapositive.*

Yet another attack on theorems is the proof by contradiction.
Generally, to prove A, we may instead show

~A > (B A ~B)
which, by (1.19), proves A. B A ~B is the contradiction. For instance, we
may show x > 0 and x < 0, but since ~(x > 0)#x < 0, we have a
contradiction. 1In particular, for theorems in the form A®B, since

~(A%B) @ A A (~B)
we shall show A A (~B) leads to a contradiction, which proves A=B.

One other proof technique works for the natural numbers only, and is
called induction. Suppose we wish to show

(Yn€N) A(n)
is true.

We shall instead prove

A(0) A (VneN)(A(n) > A(n+l))

This works because A(0) is true, and A(O0)®A(1l) yields A(1l). A(1)3A(2) then

yields A(2). A(2)3A(3) yields A(3), and so on.



217

A more formal description of why induction works can be given, if the
well-ordering property of the natural numbers is used
Axiom (well ordering): (V AC N)(A # ¢ » (3 a€ A)(V bg A)(a £ b))
In words: Any nonempty subset of N has a least element. Thus, if
(VY n€ N) A(n) fails to be true, then.
(3 n€E N)(~A(n))
Thus
{nEN/~A(n)}
has a least element. Call it K. Either K=0, and ‘
~A(0)
or K > 0, in which case we have
(~A(K)) A A(K-1)
since K is the least number satisfying ~A(K), and hence A(K-1) is true. But

n=K-1
~A(0) V (A(K-1) A ~ A(K)) @

~A(0) V (3 n€E N)(A(n) A (~A(n+l))) e

~(A(0) A (VY nE N) ~ (A(n) A (~A(n+l)))) ®

~(A(0) A (Y nE N)(A(n)

A(n+1)).
That is, if (V n€ N) A(n) fails to be true, then A(0) A (VY n€ N)(A(n)>
A(n+l)) fails to be true. By the contrapositive:
AC(O) A (VY n€E N)(A(n)>A(n+l)) implies (V n€E N) A(n).

Example 1.6

n
We show (VneN) }, 0 A = if A # 1. (1.76)
1=



The property A(n) is J N =

i=o 1-A
A(0) is true, since
o i o
3 A=A =1
i=o
and
o+l
1-A 1-A
= = 1.
1-A 1-A
We now show
A(n) 2 A(n+l).
That is, given
n+l
n i 1-A
I A =
i=0 1-:
we show
(n+l)+1 n+2
n+l i 1-\ 1-\
ZX: =
i=0 1-\ 1-\

But by the definition of summation notation

n+l 1 n i n+l
A o= A+
i=0 i=0
n+1l
1-A n+l
= + A
1-M\

n+l n+l
1-A +(1-\)A

1-A

28

(1.77)

(by 1.77)

(common denominator)
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n+l n+l n+2
1-A +A -\

1-:2

, as desired.

The following provides a good test of the reader's understanding of

induction:
n n(n+l)
I is= (1.78)
i=0 2
n L n(n+l) (n+2)
X' i(i+l) = (1.79)
i=0 3
n L. ) . n(n+l) (n+2)...(n+K) (n+K+1)
Py 1(i+1)(i+2)...(i+K) = (1.80)
i=0 K+2
(this requires induction over n and K!).
n 1 n+l
- = (1.81)
i=0 (i+1)(i+2) n+2
For j < n; A # 1:
j n+l
n i A~
2. N = — (1.82)
i=j 1-)\
For A # 1:
n+l n+2
n i A=(n+l)N 40
3 in = (1.83)
1=0 2
(1-\)

The general discussion in this section provides the 5 major types of
proofs: direct, by cases, by contrapositive, by contradiction and by
induction. We shall see many examples of each, and will note at the beginning

of the proof if contrapositve, contradiction or induction is used.



