Peak Load Pricing

How should capacity be priced?

- Pipelines
- Airlines
- Telephone networks
- Construction
- Electricity
- Highways
- Internet

Pioneered by Marcel Boiteaux

$$
\pi=p_{1} q_{1}+p_{2} q_{2}-\beta \max \left\{q_{1}, q_{2}\right\}-m c\left(q_{1}+q_{2}\right)
$$

Social welfare is
$W=\int_{0}^{q_{1}} p_{1}(x) d x+\int_{0}^{q_{2}} p_{2}(x) d x-\beta \max \left\{q_{1}, q_{2}\right\}-m c\left(q_{1}+q_{2}\right)$.
The Ramsey problem is to maximize W subject to a profit condition. As always, write the lagrangian $L=W+\lambda \pi$.

$$
0=\frac{\partial L}{\partial q_{1}}=p_{1}\left(q_{q}\right)-\beta 1_{q_{1} \geq q_{2}}-m c+\lambda\left(p_{1}\left(q_{q}\right)+q_{1} p_{1}^{\prime}\left(q_{1}\right)-\beta 1_{q_{1} \geq q_{2}}-m c\right)
$$

Or,

$$
\frac{p_{1}\left(q_{1}\right)-\beta 1_{q_{1} \geq q_{2}}-m c}{p_{1}}=\frac{\lambda}{\lambda+1} \frac{1}{\varepsilon_{1}}
$$

where $1_{q_{1} \geq q_{2}}$ is the characteristic function of the event $q_{1} \geq q_{2}$.

Similarly,

$$
\frac{p_{2}\left(q_{2}\right)-\beta 1_{q_{1} \leq q_{2}}-m c}{p_{2}}=\frac{\lambda}{\lambda+1} \frac{1}{\varepsilon_{2}}
$$

Note as before that $\lambda \rightarrow \infty$ yields the monopoly solution.

There are two potential types of solution.
Let the demand for good 1 exceed the demand for good 2.
Then either $q_{1}>q_{2}$, or the two are equal.
Case 1: $q_{1}>q_{2}$.
$\frac{p_{1}\left(q_{1}\right)-\beta-m c}{p_{1}}=\frac{\lambda}{\lambda+1} \frac{1}{\varepsilon_{1}}$ and $\frac{p_{2}\left(q_{2}\right)-m c}{p_{2}}=\frac{\lambda}{\lambda+1} \frac{1}{\varepsilon_{2}}$.
In case 1 , with all of the capacity charge allocated to good 1 , quantity for good 1 still exceeds quantity for good 2.

Thus, the peak period for good 1 is an extreme peak.

Case 2: $q_{1}=q_{2}$.
The first order conditions become inequalities, of the form
$0 \leq p_{1}\left(q_{q}\right)-m c+\lambda\left(p_{1}\left(q_{q}\right)+q_{1} p_{1}^{\prime}\left(q_{1}\right)-m c\right) \leq(1+\lambda) \beta$.
$0 \leq \frac{p_{1}\left(q_{1}\right)-m c}{p_{1}}-\frac{\lambda}{\lambda+1} \frac{1}{\varepsilon_{1}} \leq \beta$ and $0 \leq \frac{p_{2}\left(q_{2}\right)-m c}{p_{2}}-\frac{\lambda}{\lambda+1} \frac{1}{\varepsilon_{2}} \leq \beta$.
These must solve at $q_{1}=q_{0}=q$. The profit equation can be written
$p_{1}(q)-m c+p_{2}(q)-m c=\beta$
This equation shows that the capacity charge is shared across the two markets proportional to the inverse demand.

Not shared according to elasticities!

Priority Pricing

Consider a case of a continuum of consumers, each of whom desires one unit.
Rank the consumers by their valuations for the good, so that the $q^{\text {th }}$ consumer has a value $p(q)$ for the good, and p is downward sloping.

The quantity available is a random variable with distribution F.
Priority pricing is a charge schedule c which provides a unit to a customer paying $c(q)$ whenever realized supply is q or greater.

A customer of type q should choose to pay $c(q)$ for the $q^{\text {th }}$ spot in the priority list. This leads to the incentive constraint:

$$
u(q)=(p(q)-c(q))(1-F(q)) \geq(p(q)-c(\hat{q}))(1-F(\hat{q})) .
$$

The envelope theorem gives

$$
u^{\prime}(q)=p^{\prime}(q)(1-F(q)) .
$$

It is a straightforward exercise to demonstrate that the first order condition is sufficient; see handout \#2.

Let $F(H)=1$, so that $u(H)=0$. Then

$$
\begin{gathered}
(p(q)-c(q))(1-F(q))=u(q)=-\int_{q}^{H} u^{\prime}(s) d s=-\int_{q}^{H} p^{\prime}(s)(1-F(s)) d s \\
=p(q)(1-F(q))-\int_{q}^{H} p(s) f(s) d s
\end{gathered}
$$

Thus,
$c(q)=\int_{q}^{H} p(s) \frac{f(s)}{1-F(q)} d s=E[$ spot price $\mid p(s) \geq p(q)]$.
Revenues to the firm from the priority pricing are
$R=\int_{0}^{H} c(q)(1-F(q)) d q=\int_{0}^{H} \int_{q}^{H} p(s) f(s) d s d q=\int_{0}^{H} q p(q) f(q) d q$.

This is the revenue associated with a competitive supply;
A monopolist might have an incentive to withhold capacity to boost prices.
How does a monopolist do so? Withholding of capacity has the property of changing the distribution of available supply, in a first order stochastic dominant manner. In particular, the monopolist can offer any distribution of capacity G, provided $G \geq F$. What is the monopolist's solution? Rewrite R to obtain
$R=\int_{0}^{H} q p(q) g(q) d q=\int_{0}^{H} M R(q)(1-G(q)) d q$.

Provided marginal revenue $M R$ is single-peaked,

$$
G=\left\{\begin{array}{l}
F \text { if } M R \geq 0 \\
1 \text { if } M R<0
\end{array}\right.
$$

That is, the monopolist cuts off the capacity at the monopoly supply.

Matching Problems

Consider first the linear demand case with a uniform distribution of outages. Perfect matching gets a payoff
$\int_{0}^{1} p(q)(1-q) d q=\int_{0}^{1}(1-q)^{2} d q=\frac{1}{3}$.

No matching - that is a random assignment - produces an expected value of $1 / 4$, a fact that is evident from
$\int_{0}^{1} p(q) d q \int_{0}^{1}(1-q) d q=\left(\int_{0}^{1}(1-q) d q\right)^{2}=\frac{1}{4}$.

Now consider two groups of equal size.
The high value group has an average value of $3 / 4$, and is served with probability
$\int_{0}^{1 / 2} 2 q d q+\int_{1 / 2}^{1} 1 d q=3 / 4$.
The low value group has average value $1 / 4$ and is served with probability $1 / 4$. Thus, the expected value from two categories is
$\frac{1}{2}\left(\frac{9}{16}+\frac{1}{16}\right)=\frac{5}{16}$.
Note that $5 / 16$ is 75% of the way from $1 / 4$ to $1 / 3$! That is, a single group captures 75% of net value of a continuum of types!

I show elsewhere that, provided a common hazard rate assumption is satisfied, two groups of equal size generally captures 50% or more of the possible gains over no priority pricing.

Wilson shows that the losses from finite classes are on the order of $1 / n^{2}$.

