Price Discrimination

Shoe: Buy one, get one free
Price discrimination is charging different people different prices for the same good.

Student or senior citizen discounts
Coupons
Frequent flyer programs
Quantity discounts

- electricity
- phone service
- frequent flyer programs
- multi-packs of paper towels, lightbulbs, toothpaste, etc.
- shopping clubs
- outlet malls

Bargaining (personalized prices)

- automobiles
- third world

Damaged Goods

- student software
- Intel 486SX
- IBM LaserPrinter E
- Sony Minidisc
- Fedex $2^{\text {ND }}$ day delivery

Freight absorption
It is not price discrimination to pass on cost savings.

VARIAN

Each consumer demands a single unit
Consumers are ranked on a continuum by their type t.
Distribution of types be F, and index types by their probability $q=F(t)$.
The willingness to pay of a type t consumer is $p(q), p^{\prime}<0$.
A non-discriminating monopolist earns $\mathrm{qp}(\mathrm{q})$; let q_{0} maximize profits.
A two price discriminating monopolist earns $\mathrm{q}_{1} \mathrm{p}\left(\mathrm{q}_{1}\right)+\left(\mathrm{q}_{2}-\mathrm{q}_{1}\right) \mathrm{p}\left(\mathrm{q}_{2}\right)$ and let q_{1} and q_{2} stand for the maximing arguments.

Theorem (Varian 1985): Quantity and welfare (sum of profits and consumer surplus) are higher under price discrimination.

Proof: Note that welfare depends only on quantity.
Thus, it is sufficient to prove that quantity is not lower under price discrimination.
Suppose not, that is, suppose $\mathrm{q}_{2}<\mathrm{q}_{0}$. Then

$$
-p\left(q_{0}\right) q_{1}>-p\left(q_{2}\right) q_{1}
$$

Profit maximization for the non-discriminating monopolist insures

$$
p\left(q_{0}\right) q_{0} \geq p\left(q_{2}\right) q_{2} .
$$

Add these two inequalities to obtain

$$
\mathrm{p}\left(\mathrm{q}_{0}\right)\left(\mathrm{q}_{0}-\mathrm{q}_{1}\right)>\mathrm{p}\left(\mathrm{q}_{2}\right)\left(\mathrm{q}_{2}-\mathrm{q}_{1}\right)
$$

which implies
$p\left(q_{1}\right) q_{1}+p\left(q_{0}\right)\left(q_{0}-q_{1}\right)>p\left(q_{1}\right) q_{1}+p\left(q_{2}\right)\left(q_{2}-q_{1}\right)$,
which contradicts profit maximization of the two price monopolist. Q.E.D.

Suppose there are n markets, and demand is given by $x_{i}(\mathbf{p})$ in market i where $\mathbf{p}=\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right)$.
$\pi=\sum_{i=1}^{n}\left(\mathrm{p}_{\mathrm{i}}-\mathrm{mc}\right) \mathrm{x}_{\mathrm{i}}(\mathbf{p})$.
A non-discriminating monopolist charges a constant price p_{0} in all n markets.
The discriminating monopolist will charge distinct prices p_{i} in the markets, $\mathrm{i}=1, \ldots, \mathrm{n}$.

Define the cross-price elasticity of substitution

$$
\varepsilon_{\mathrm{ij}}=\frac{\mathrm{p}_{\mathrm{j}}}{\mathrm{x}_{\mathrm{i}}} \frac{\mathrm{dx}}{\mathrm{i}} \mathrm{dp}_{\mathrm{j}} .
$$

Let E be the matrix of elasticities. Note that, if preferences can be expressed as the maximization of a representative consumer, then the consumer maximizes $u(\mathbf{x})$-px, which gives FOC $u^{\prime}(\mathbf{x})=\mathbf{p}$, and thus $u^{\prime \prime}(x) \mathbf{d} \mathbf{x}=\mathbf{d p}$. This shows that demand \mathbf{x} has a symmetric derivative, a fact used in the next development.

The first order condition for profit maximization entails

$$
\begin{aligned}
0= & \frac{\partial \pi}{\partial p_{i}}=x_{i}+\sum_{j=1}^{n}\left(p_{j}-m c\right) \frac{\partial x_{j}}{\partial p_{i}}=x_{i}+\sum_{j=1}^{n}\left(p_{j}-m c\right) \frac{\partial x_{i}}{\partial p_{j}} \\
& =x_{i}\left(1+\sum_{j=1}^{n} \frac{\left(p_{j}-m c\right)}{p_{j}} \varepsilon_{i j}\right)
\end{aligned}
$$

Let $L_{i}=\frac{p_{i}-m c}{p_{i}}$, and express the first order condition in a matrix format:
$\mathbf{0}=\mathbf{1}+E \mathbf{L}$, and thus $\mathbf{L}=-\mathrm{E}^{-1} \mathbf{1}$. This generalizes the well-known one-good case of

$$
\frac{p-m c}{p}=-\frac{1}{\varepsilon},
$$

where a is the elasticity of demand (with a minus sign).

In the most frequently encountered version of monopoly pricing, demands are independent, in which case E is a diagonal matrix. The markets are then independent, and

$$
\frac{\mathrm{p}_{\mathrm{i}}-\mathrm{mc}_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}}=-\frac{1}{\varepsilon_{\mathrm{ii}}}
$$

Theorem (Varian, 1985): The change in welfare, $\Delta \mathrm{W}$, when a monopolist goes from non-discrimination to discrimination is given by $\sum_{i=1}^{n}\left(p_{i}-m c\right) \Delta x_{i} \leq \Delta W \leq\left(p_{0}-m c\right) \sum_{i=1}^{n} \Delta x_{i}$.

Proof: Let $\mathbf{p}_{\mathbf{0}}=\mathrm{p}_{\mathbf{0}} \mathbf{1}$, be the one-price monopoly price vector, and \mathbf{p} represent the prices of the discriminating monopolist.

Let v be the indirect utility function (consumer utility as a function of prices). The indirect utility function is convex, and its derivative is demand (Roy's identity). Therefore,
$\mathbf{x}\left(\mathbf{p}_{\mathbf{0}}\right)\left(\mathbf{p}_{\mathbf{0}}-\mathbf{p}\right) \leq \mathrm{v}(\mathbf{p})-\mathrm{v}\left(\mathbf{p}_{\mathbf{0}}\right) \leq \mathbf{x}(\mathbf{p})\left(\mathbf{p}_{\mathbf{0}}-\mathbf{p}\right)$
The change in profits is

$$
\Delta \pi=\mathbf{x}(\mathbf{p})(\mathbf{p}-\mathrm{mc} \mathbf{1})-\mathbf{x}\left(\mathbf{p}_{\mathbf{0}}\right) \mathbf{1}\left(\mathrm{p}_{0}-\mathrm{mc}\right)
$$

Since the change in welfare is the change in consumer utility plus the change in profits, we have
$\mathbf{x}\left(\mathbf{p}_{\mathbf{0}}\right)\left(\mathbf{p}_{\mathbf{0}}-\mathbf{p}\right)+\Delta \pi \leq \Delta \mathrm{W} \leq \mathbf{x}(\mathbf{p})\left(\mathbf{p}_{\mathbf{0}}-\mathbf{p}\right)+\Delta \pi$,
which combines with $\Delta \mathbf{x}=\mathbf{x}(\mathbf{p})-\mathbf{x}\left(\mathbf{p}_{\mathbf{0}}\right)$ to establish the theorem. Q.E.D.

This theorem has a powerful corollary, first established by Schmalensee.
If price discrimination causes output to fall, then price discrimination decreases welfare relative to the absence of price discrimination.

Market 1: pink area lost by price discrimination

Even in the simplest two-market case of linear demand, price discrimination may increase or decrease welfare.

It is straightforward to construct cases where welfare rises under price discrimination.

Market 1: Red line indicates no price discrimination outcome.

Market 2: With price discrimination, market 2 is served.

Ramsey Pricing

How should a multi-product or multi-market monopolist be regulated? Consider the problem
$\max u(\mathbf{x})-\mathrm{c}(\mathbf{x 1})$ s.t. $\mathbf{p x}-\mathrm{c}(\mathbf{x} \mathbf{1}) \geq \pi_{0}$.
This formulation permits average costs to be decreasing. Write the Lagrangian
$\Lambda=u(\mathbf{x})-\mathrm{c}(\mathbf{x} \mathbf{1})+\lambda(\mathbf{p x}-\mathrm{c}(\mathbf{x} \mathbf{1}))=\mathrm{u}(\mathbf{x})-\mathbf{p} \mathbf{x}+(1+\lambda)(\mathbf{p} \mathbf{x}-\mathrm{c}(\mathbf{x} \mathbf{1}))$
The lagrangian term λ has the interpretation that it is the marginal increase in welfare associated with a decrease in firm profit. Using Roy's identity,

$$
\begin{aligned}
0= & \frac{\partial L}{\partial p_{i}}=\lambda x_{i}+(1+\lambda) \sum_{j=1}^{n}\left(p_{j}-m c\right) \frac{\partial x_{j}}{\partial p_{i}}=\lambda x_{i}+(1+\lambda) \sum_{j=1}^{n}\left(p_{j}-m c\right) \frac{\partial x_{i}}{\partial p_{j}} \\
& =\lambda x_{i}+(1+\lambda) x_{i} \sum_{j=1}^{n} \frac{p_{j}-m c}{p_{j}} \varepsilon_{i j} .
\end{aligned}
$$

Write the first order conditions in vector form, to obtain
$-\lambda /(1+\lambda) \mathbf{1}=\mathbf{E} \mathbf{L}$.
This equation solves for the general Ramsey price solution:
$\mathbf{L}=-\frac{\lambda}{\lambda+1} \mathbf{E}^{-1} \mathbf{1}$.
The monopoly outcome arises when $\lambda \rightarrow \infty$.
Setting $\lambda=0$ maximizes total welfare and sets price equal to marginal cost in all industries.

Arbitrage

Cross-price elasticities can be interpreted as a consequence of arbitrage by individuals.
Suppose leakage from the low priced market to the high priced market costs $c(m)$, where m is the size of the transfer from market 1 to market 2 , and that values in the two markets are otherwise independent.

The function c is assumed convex, with $\mathrm{c}^{\prime}(0)=0$, which insures that goods flow from the low priced market to the high priced market.
Assume that consumer demands in markets 1 and 2 are $q_{1}\left(p_{1}\right)$ and $q_{2}\left(p_{2}\right)$. The demands facing the seller, x_{i} will satisfy:

$$
\begin{aligned}
& \mathrm{p}_{1}-\mathrm{p}_{2}=\mathrm{c}^{\prime}(\mathrm{m}), \\
& \mathrm{q}_{1}\left(\mathrm{p}_{1}\right)-\mathrm{m}=\mathrm{x}_{1}, \text { and } \\
& \mathrm{q}_{2}\left(\mathrm{p}_{2}\right)+\mathrm{m}=\mathrm{x}_{2},
\end{aligned}
$$

An interesting aspect of these equations is that demand is reconcilable with preferences of a single consumer, that is: $\frac{\partial x_{i}}{\partial p_{j}}=\frac{\partial x_{j}}{\partial p_{i}}$.

Means of Preventing Arbitrage

1. Services
2. Warranties
3. Differentiating products
4. Transport costs
5. Contracts
6. Matching problem
7. Government
8. Quality
